Hung, K., Montalvao, C., Yeung, A. K., Li, G. & Bornstein, M. M. Frequency, location, and morphology of accessory maxillary sinus Ostia: a retrospective study using cone beam computed tomography (CBCT). Surg. Radiol. Anat. 42, 219–228 (2020).
Shetty, S. R. et al. Application of a Cone-Beam Computed Tomography-Based Index for Evaluating Surgical Sites Prior to Sinus Lift Procedures-A Pilot Study. Biomed. Res. Int. 9601968 (2021). (2021).
Serindere, G., Gunduz, K. & Avsever, H. The relationship between an accessory maxillary ostium and variations in structures adjacent to the maxillary sinus without polyps. Int. Arch. Otorhinolaryngol. 26, e548–e555 (2022).
Prasanna, L. C. & Mamatha, H. The location of maxillary sinus ostium and its clinical application. Indian J. Otolaryngol. Head Neck Surg. 62, 335–337 (2010).
Rajendiran, D., Nagabooshanam, M. & Venugopal, R. Cross-sectional observational study on accessory ostium of the maxillary sinus. J. Clin. Sci. Res. 12, 88–92 (2023).
Yenigun, A. et al. The effect of the presence of the accessory maxillary ostium on the maxillary sinus. Eur. Arch. Otorhinolaryngol. 273, 4315–4319 (2016).
Mahajan, A., Mahajan, A., Gupta, K. & &Verma, P. Anatomical variations of accessory maxillary sinus Ostium: an endoscopic study. Int. J. Anat. Res. 5, 3484–3490 (2017).
Do, J. & Han, J. J. Anatomical characteristics of the accessory maxillary ostium in Three-Dimensional analysis. Medicina 58, 1243 (2022).
Bani-Ata, M. et al. Accessory maxillary Ostia: Prevalence of an anatomical variant and association with chronic sinusitis. Int. J. Gen. Med. 13, 163–168 (2020).
Shetty, S. et al. A study on the association between accessory maxillary ostium and maxillary sinus mucosal thickening using cone beam computed tomography. Head Face Med. 17, 28 (2021).
Soikkonen, K. & Ainamo, A. Radiographic maxillary sinus findings in the elderly. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 80, 487–491 (1995).
Swamy, A. & Sarumathi, T. Evaluating the prevalence, location, morphology of accessory maxillary sinus Ostia: A retrospective, cross sectional study using cone beam computed tomography. J. Indian Acad. Oral Med. Radiol. 35, 241–245 (2023).
Aksoy, O. & Orhan, K. Association between odontogenic conditions and maxillary sinus mucosal thickening: A retrospective CBCT study. Clin. Oral Investig. 23, 123–131 (2019).
Ali, I. K. et al. Cone-beam computed tomography analysis of accessory maxillary ostium and Haller cells: Prevalence and clinical significance. Imaging Sci. Dent. 47, 33–37 (2017).
Zou, C. et al. Preliminary study on AI-assisted diagnosis of bone remodeling in chronic maxillary sinusitis. BMC Med. Imaging. 24, 140 (2024).
Shetty, S. et al. The application of mask Region-Based convolutional neural networks in the detection of nasal septal deviation using cone beam computed tomography images: Proof-of-Concept study. JMIR Form. Res. 8, e57335 (2024).
Wanni, X., You-Lei, F. & Dongmei, Z. ResNet and its application to medical image processing: Research progress and challenges. Computer Methods and Programs in Biomedicine. 240, 107660 (2023).
Showkat, S. & Qureshi, S. Efficacy of transfer Learning-based ResNet models in chest X-ray image classification for detecting COVID-19 pneumonia. Chemometr Intell. Lab. Syst. 224, 104534 (2022).
Hasanah, S. A., Pravitasari, A. A., Abdullah, A. S., Yulita, I. N. & Asnawi, M. H. A deep learning review of ResNet architecture for lung disease identification in CXR image. Appl. Sci. 13, 13111 (2023).
van Leeuwen, K. G., de Rooij, M., Schalekamp, S., van Ginneken, B. & Rutten, M. M. How does artificial intelligence in radiology improve efficiency and health outcomes? Pediatr. Radiol. 52, 2087–2093 (2022).
Bayrakdar, I. S. et al. Artificial intelligence system for automatic maxillary sinus segmentation on cone beam computed tomography images. Dentomaxillofac Radiol. 53, 256–266 (2024).
Altun, O. et al. Automatic maxillary sinus segmentation and pathology classification on cone-beam computed tomographic images using deep learning. BMC Oral Health. 24, 1208 (2024).
Sin, Ç. et al. A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Orthod. Craniofac. Res. 24 Suppl 2, 117–123 (2021). (2021).
Wang, S., Fei, J., Liu, Y., Huang, Y. & Li, L. Study on the application of deep learning artificial intelligence techniques in the diagnosis of nasal bone fracture. Int. J. Burns Trauma. 14, 125–132 (2024).
Elgendi, M. et al. The effectiveness of image augmentation in deep learning networks for detecting COVID-19: A geometric transformation perspective. Front. Med. (Lausanne). 28, 629134 (2021).
Prezja, F., Annala, L., Kiiskinen, S. & Ojala, T. Exploring the efficacy of base data augmentation methods in deep Learning-Based radiograph classification of knee joint osteoarthritis. Algorithms 17, 8 (2024).
Safi, S. K. Empowering deep learning for images: A comparative analysis of regularization techniques in CNNs. J. Pub Int. Res. Eng. Manag. 5, 1–13 (2021).
Soylemez, U. O. & Atalay, B. Investigation of the accessory maxillary Ostium: A congenital variation or acquired defect? Dentomaxillofac Radiol. 50, 20200575 (2021).
Jones, N. S. CT of the paranasal sinuses: A review of the correlation with clinical, surgical and histopathological findings. Clin. Otolaryngol. Allied Sci. 27, 11–17 (2002).
Gutman, M. & Houser, S. Iatrogenic maxillary sinus recirculation and beyond. Ear Nose Throat J. 82, 61–63 (2003).
Mladina, R., Vuković, K. & Poje, G. The two holes syndrome. Am. J. Rhinol Allergy. 23, 602–604 (2006).
Chung, S. K., Dhong, H. J. & Na, D. G. Mucus circulation between accessory ostium and natural ostium of maxillary sinus. J. Laryngol Otol. 113, 865–867 (1999).
Kats, L., Goldman, Y. & Kahn, A. Automatic detection of image sharpening in maxillofacial radiology. BMC Oral Health. 21, 411 (2021).
Mezzoudj, S., Belkessa, I., Bouras, F. & Meriem, K. A novel distributed deep learning approach for large-scale chest X-ray covid-19 images detection, 07 February 2023, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-2534755/v1]
Hu, R. et al. Automated diagnosis of covid-19 using deep learning and data augmentation on chest CT. 1–11 https://doi.org/10.1101/2020.04.24.20078998(2020).
Magat, G. et al. Automatic deep learning detection of overhanging restorations in bitewing radiographs. Dentomaxillofac Radiol. 53, 468–477 (2024).
Orhan, K., Bayrakdar, I. S. & Yakin, E. Second mesio-buccal Canal segmentation with YOLOv5 using CBCT images. Int. Dent. J. 74, S13 (2024).
Abdrakhmanov, R., Viderman, D., Wong, K. S. & Lee, M. Few-Shot Learning based on Residual Neural Networks for X-ray Image Classification. IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic 2022, 117–1821, (2022). https://doi.org/10.1109/SMC53654.2022.9945469
Cejudo, J. E., Chaurasia, A., Feldberg, B., Krois, J. & Schwendicke, F. Classification of dental radiographs using deep learning. J. Clin. Med. 10, 1496 (2021).
Shetty, S. et al. Application of artificial intelligence-based detection of furcation involvement in mandibular first molar using cone beam tomography images- a preliminary study. BMC Oral Health. 24, 1476 (2024).
AlQabbani, A., Aldhahri, R. & Alhumaizi, A. Rare variation of accessory maxillary ostium. Cureus 12, e11921 (2020).
Okumus, O. & Şalli, G. A. The relationship between accessory maxillary Ostium, maxillary sinus pathologies, and sinonasal region variations. J. Stoma. 76, 182–190 (2023).
Zahedi, F. D., Yaacob, N. M., Wang, Y. & Abdullah, B. Radiological anatomical variations of the lateral nasal wall and anterior skull base amongst different populations: A systematic review and meta-analysis. Clin. Otolaryngol. 48, 271–285 (2023).
Çelebi, A. et al. Maxillary sinus detection on cone beam computed tomography images using ResNet and Swin Transformer-based UNet. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 138, 149–161 (2024).
Alhumaid, M. & Fayoumi, A. G. Transfer Learning-Based classification of maxillary sinus using generative adversarial networks. Appl. Sci. 14, 3083 (2024).
He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, 770–778. (2016). https://doi.org/10.1109/CVPR.2016.90 (2016).
Kim, H. G., Lee, K. M., Kim, E. J. & Lee, J. S. Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using multiple deep learning models. Quant. Imaging Med. Surg. 9, 942–951 (2019).
Yosinski, J., Jeff Clune, J., Bengio, Y. & Lipson, H. How transferable are features in deep neural networks? NIPS’14: Proceedings of the 27th International Conference on Neural Information Processing Systems. 2, 3320–3332 (2014).
Ukil, A., Marin, L. & Jara, A. J. L1 and L2 Regularized Deep Residual Network Model for Automated Detection of Myocardial Infarction (Heart Attack) Using Electrocardiogram Signals. Proceedings of the CIKM 2021 Workshops, November 01–05, (2021). https://ceur-ws.org/Vol-3052/paper9.pdf
Parmar, P. et al. An artificial intelligence algorithm that identifies middle turbinate pneumatisation (concha bullosa) on sinus computed tomography scans. J. Laryngol Otol. 134, 328–331 (2020).
Muzahid, A. M. et al. Deep learning for 3D object recognition: A survey. Neurocomputing, 608, (2024). https://doi.org/10.1016/j.neucom.2024.128436
Bailly, A. et al. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Comput. Methods Programs Biomed. 213, 106504 (2022).