Home Dental Radiology Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review

Artificial intelligence models for clinical usage in dentistry with a focus on dentomaxillofacial CBCT: a systematic review

by adminjay


  • Hung K, Yeung AWK, Tanaka R, Bornstein MM. Current applications, opportunities and limitations of AI for 3D imaging in dental research and practice. Int J Environ Res Public Health. 2020;17:1–18. https://doi.org/10.3390/ijerph17124424.

    Article 

    Google Scholar
     

  • Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry—a systematic review. J Dent Sci. 2021;16:508–22. https://doi.org/10.1016/j.jds.2020.06.019.

    Article 
    PubMed 

    Google Scholar
     

  • Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500. https://doi.org/10.1038/S41568-018-0016-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020. https://doi.org/10.1259/DMFR.20190107.

    Article 
    PubMed 

    Google Scholar
     

  • Scarfe WC, Angelopoulos C. Maxillofacial cone beam computed tomography: principles, techniques and clinical applications. Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-62061-9/COVER.

  • Parker JM, Mol A, Rivera EM, Tawil PZ. Cone-beam computed tomography uses in clinical endodontics: observer variability in detecting periapical lesions. J Endod. 2017;43:184–7. https://doi.org/10.1016/J.JOEN.2016.10.007.

    Article 
    PubMed 

    Google Scholar
     

  • Géron A. Hands-on machine learning with scikit-learn, keras, and tensorflow. Concepts, tools, and techniques to build intelligent systems. 2nd ed. O’Reilly Media; 2019.

  • Deo RC. Machine learning in medicine. Circulation. 2015;132:1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsumata A, Fujita H. Progress of computer-aided detection/diagnosis (CAD) in dentistry. Jpn Dent Sci Rev. 2014;50:63–8. https://doi.org/10.1016/J.JDSR.2014.03.002.

    Article 

    Google Scholar
     

  • Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18:570–84. https://doi.org/10.3348/KJR.2017.18.4.570.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Shea K, Nash R. An introduction to convolutional neural networks. arXiv preprint. 2015. https://doi.org/10.48550/arxiv.1511.08458.

    Article 

    Google Scholar
     

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. Statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:372. https://doi.org/10.1136/BMJ.N71.

    Article 

    Google Scholar
     

  • Rayyan – Intelligent Systematic Review – n.d. https://www.rayyan.ai/. Accessed 24 Jun 2022.

  • Introduction | Mendeley n.d. https://www.mendeley.com/release-notes-reference-manager/. Accessed 24 Jun 2022.

  • Moons KGM, Wolff RF, Riley RD, Penny WF, Westwood M, et al. PROBAST: a tool to assess risk of bias and applicability of prediction model studies: explanation and elaboration. Ann Intern Med. 2019;170:1–33. https://doi.org/10.7326/M18-1377.

    Article 

    Google Scholar
     

  • Wang L, Gao Y, Shi F, Li G, Gilmore JH, Lin W, et al. LINKS: learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images. Neuroimage. 2015;108:160–72. https://doi.org/10.1016/J.NEUROIMAGE.2014.12.042.

    Article 
    PubMed 

    Google Scholar
     

  • Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal. 2016;31:63–76. https://doi.org/10.1016/J.MEDIA.2016.02.004.

    Article 
    PubMed 

    Google Scholar
     

  • 2015 MICCAI Challenge – Imageng n.d. http://www.imagenglab.com/wiki/mediawiki/index.php?title=2015_MICCAI_Challenge. Accessed 23 Jun 2022.

  • Raudaschl PF, Zaffino P, Sharp GC, Spadea MF, Chen A, Dawant BM, et al. Evaluation of segmentation methods on head and neck CT: Auto-segmentation challenge 2015. Med Phys. 2017;44:2020–36. https://doi.org/10.1002/MP.12197.

    Article 
    PubMed 

    Google Scholar
     

  • Cipriano M, Allegretti S, Bolelli F, Di Bartolomeo M, Pollastri F, Pellacani A, et al. Deep segmentation of the mandibular canal: a new 3D annotated dataset of CBCT volumes. IEEE Access. 2022;10:11500–10. https://doi.org/10.1109/ACCESS.2022.3144840.

    Article 

    Google Scholar
     

  • Suomalainen A, Vehmas T, Kortesniemi M, Robinson S, Peltola J. Accuracy of linear measurements using dental cone beam and conventional multislice computed tomography. Dentomaxillofac Radiol. 2008;37:10–7. https://doi.org/10.1259/DMFR/14140281.

    Article 
    PubMed 

    Google Scholar
     

  • Bayrakdar SK, Orhan K, Bayrakdar IS, Bilgir E, Ezhov M, Gusarev M, et al. A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med Imaging. 2021. https://doi.org/10.1186/S12880-021-00618-Z.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Saidi A, Naaman A, Zogheib C. Accuracy of cone-beam computed tomography and periapical radiography in endodontically treated teeth evaluation: a five-year retrospective study. J Int Oral Heal JIOH. 2015;7:15.


    Google Scholar
     

  • Gupta A, Kharbanda OP, Sardana V, Balachandran R, Sardana HK. Accuracy of 3D cephalometric measurements based on an automatic knowledge-based landmark detection algorithm. Int J Comput Assist Radiol Surg. 2016;11:1297–309. https://doi.org/10.1007/S11548-015-1334-7.

    Article 
    PubMed 

    Google Scholar
     

  • Mihaela H, Maria M, Benjamin S, Ruben P, Caroline OA, Oana A, et al. Irradiation provided by dental radiological procedures in a pediatric population. Eur J Radiol. 2018;103:112–7. https://doi.org/10.1016/J.EJRAD.2018.04.021.

    Article 

    Google Scholar
     

  • Oenning AC, Jacobs R, Pauwels R, Stratis A, Hedesiu M, Salmon B. Cone-beam CT in paediatric dentistry: DIMITRA project position statement. Pediatr Radiol. 2018;48:308–16. https://doi.org/10.1007/S00247-017-4012-9.

    Article 
    PubMed 

    Google Scholar
     

  • Oenning AC, Pauwels R, Stratis A, De Faria VK, Tijskens E, De Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Reports. 2019;9:1–9. https://doi.org/10.1038/s41598-019-41949-w.

    Article 

    Google Scholar
     

  • O’Mahony N, Campbell S, Carvalho A, Harapanahalli S. Deep Learning vs. Traditional computer vision. CVC 2019. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1910.13796

  • Goodfellow I, Bengio Y, Courville A. Deep learning (adaptive computation and machine learning series). The MIT Press; 2016.

  • Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2:230–43. https://doi.org/10.1136/SVN-2017-000101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pisano ED, Garnett LR. Big data and radiology research. J Am Coll Radiol. 2019;16:1347–50. https://doi.org/10.1016/j.jacr.2019.06.003.

    Article 
    PubMed 

    Google Scholar
     

  • Weygandt JJ, Kimmel PD, Kieso DE, Aly IM, Steenkamp JBEM, Tatum P, et al. Energy and policy considerations for deep learning in NLP. J Int Mark. 2019;53:3645–50. https://doi.org/10.48550/arxiv.1906.02243.

    Article 

    Google Scholar
     

  • Poon AIF, Sung JJY. Opening the black box of AI-Medicine. J Gastroenterol Hepatol. 2021;36:581–4. https://doi.org/10.1111/JGH.15384.

    Article 
    PubMed 

    Google Scholar
     

  • Liao WC, Chen CH, Pan YH, Chang MC, Jeng JH. Vertical root fracture in non-endodontically and endodontically treated teeth: current understanding and future challenge. J Pers Med. 2021. https://doi.org/10.3390/JPM11121375.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Setzer FC, Shi KJ, Zhang Z, Yan H, Yoon H, Mupparapu M, et al. Artificial intelligence for the computer-aided detection of periapical lesions in cone-beam computed tomographic images. J Endod. 2020;46:987–93. https://doi.org/10.1016/j.joen.2020.03.025.

    Article 
    PubMed 

    Google Scholar
     

  • Weng W, Zhu X. U-Net: convolutional networks for biomedical image segmentation. IEEE Access. 2015;9:16591–603. https://doi.org/10.48550/arxiv.1505.04597.

    Article 

    Google Scholar
     

  • Zheng Z, Yan H, Setzer FC, Shi KJ, Mupparapu M, Li J. Anatomically constrained deep learning for automating dental CBCT segmentation and lesion detection. IEEE Trans Autom Sci Eng. 2021;18:603–14. https://doi.org/10.1109/TASE.2020.3025871.

    Article 

    Google Scholar
     

  • Jegou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. IEEE Comput Soc Conf Comput Vis Pattern Recognit Work 2016. 2017. https://doi.org/10.48550/arxiv.1611.09326.

    Article 

    Google Scholar
     

  • Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53:680–9. https://doi.org/10.1111/iej.13265.

    Article 
    PubMed 

    Google Scholar
     

  • Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. Detection of vertical root fractures in intact and endodontically treated premolar teeth by designing a probabilistic neural network: an ex vivo study. 2017. Dentomaxillofac Radiol. .

  • Johari M, Esmaeili F, Andalib A, Garjani S, Saberkari H. A novel thresholding based algorithm for detection of vertical root fracture in nonendodontically treated premolar teeth. J Med Signals Sens. 2016;6:81–90. https://doi.org/10.4103/2228-7477.181027.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roongruangsilp P, Khongkhunthian P. The learning curve of artificial intelligence for dental implant treatment planning: a descriptive study. Appl Sci. 2021;11:10159. https://doi.org/10.3390/APP112110159.

    Article 

    Google Scholar
     

  • Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137–49. https://doi.org/10.1109/TPAMI.2016.2577031.

    Article 
    PubMed 

    Google Scholar
     

  • Sorkhabi MM, Saadat KM. Classification of alveolar bone density using 3-D deep convolutional neural network in the cone-beam CT images: a 6-month clinical study. Measurement. 2019;148:106945. https://doi.org/10.1016/J.MEASUREMENT.2019.106945.

    Article 

    Google Scholar
     

  • Gerlach NL, Meijer GJ, Kroon D-J, Bronkhorst EM, Bergé SJ, Maal TJJ. Evaluation of the potential of automatic segmentation of the mandibular canal using cone-beam computed tomography. Br J Oral Maxillofac Surg. 2014;52:838–44. https://doi.org/10.1016/j.bjoms.2014.07.253.

    Article 
    PubMed 

    Google Scholar
     

  • Abdolali F, Zoroofi RA, Abdolali M, Yokota F, Otake Y, Sato Y. Automatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marching. Int J Comput Assist Radiol Surg. 2017;12:581–93. https://doi.org/10.1007/S11548-016-1484-2.

    Article 
    PubMed 

    Google Scholar
     

  • Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep. 2020;10:5842. https://doi.org/10.1038/s41598-020-62321-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen S, Ma K, Zheng Y. Med3D: transfer learning for 3D medical image analysis . ArXiv Abs/190400625 2019. Computer Vision and Pattern Recognition. https://doi.org/10.48550/arXiv.1904.00625

  • Lim H-K, Jung S-K, Kim S-H, Cho Y, Song I-S. Deep semi-supervised learning for automatic segmentation of inferior alveolar nerve using a convolutional neural network. BMC Oral Health. 2021;21:630. https://doi.org/10.1186/s12903-021-01983-5.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abdolali F, Zoroofi RA, Otake Y, Sato Y. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and spherical harmonics. Comput Methods Programs Biomed. 2017;139:197–207. https://doi.org/10.1016/j.cmpb.2016.10.024.

    Article 
    PubMed 

    Google Scholar
     

  • Yilmaz E, Kayikcioglu T, Kayipmaz S. Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography. Comput Methods Programs Biomed. 2017;146:91–100. https://doi.org/10.1016/j.cmpb.2017.05.012.

    Article 
    PubMed 

    Google Scholar
     

  • Abdolali F, Zoroofi RA, Otake Y, Sato Y. A novel image-based retrieval system for characterization of maxillofacial lesions in cone beam CT images. Int J Comput Assist Radiol Surg. 2019. https://doi.org/10.1007/s11548-019-01946-w.

    Article 
    PubMed 

    Google Scholar
     

  • Chai Z-K, Mao L, Chen H, Sun T-G, Shen X-M, Liu J, et al. Improved diagnostic accuracy of ameloblastoma and odontogenic keratocyst on cone-beam CT by artificial intelligence. Front Oncol. 2021;11:793417. https://doi.org/10.3389/fonc.2021.793417.

    Article 
    PubMed 

    Google Scholar
     

  • Lin Y, He M. Deep learning-based three-dimensional oral conical beam computed tomography for diagnosis. J Healthc Eng. 2021;2021:1–7. https://doi.org/10.1155/2021/4676316.

    Article 

    Google Scholar
     

  • Haghnegahdar AA, Kolahi S, Khojastepour L, Tajeripour F. Diagnosis of tempromandibular disorders using local binary patterns. J Biomed Phys Eng. 2018. https://doi.org/10.22086/jbpe.v0i0.577.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Dumast P, Mirabel C, Cevidanes L, Ruellas A, Yatabe M, Ioshida M, et al. A web-based system for neural network based classification in temporomandibular joint osteoarthritis. Comput Med Imaging Graph. 2018;67:45–54. https://doi.org/10.1016/j.compmedimag.2018.04.009.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Chen KC, Shi F, Liao S, Li G, Gao Y, et al. Automated segmentation of CBCT image using spiral CT atlases and convex optimization. Med Image Comput Comput Assist Interv. 2013;16:251–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang YB, Xia JJ, Yuan P, Kuo TH, Xiong Z, Gateno J, et al. 3D segmentation of maxilla in cone-beam computed tomography imaging using base invariant wavelet active shape model on customized two-manifold topology. J Xray Sci Technol. 2013;21:251–82.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu B, Der Wel HV, Kraeima J, Glas HH, Guo J, Borra RJH, et al. Automatic segmentation of mandible from conventional methods to deep learning-a review. J Pers Med. 2021. https://doi.org/10.3390/jpm11070629.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qiu B, Wel H, Kraeima J, Glas HH, Guo J, Borra RJH, et al. Mandible segmentation of dental cbct scans affected by metal artifacts using coarse-to-fine learning model. J Pers Med. 2021. https://doi.org/10.3390/jpm11060560.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:2481–95. https://doi.org/10.1109/TPAMI.2016.2644615.

    Article 
    PubMed 

    Google Scholar
     

  • ter Horst R, van Weert H, Loonen T, Bergé S, Vinayahalingam S, Baan F, et al. Three-dimensional virtual planning in mandibular advancement surgery: soft tissue prediction based on deep learning. J Cranio-Maxillofacial Surg. 2021;49:775–82. https://doi.org/10.1016/j.jcms.2021.04.001.

    Article 

    Google Scholar
     

  • Zhang N, Singh S, Liu S, Zbijewski W, Grayson WL. A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds. 3D Print Med. 2022. https://doi.org/10.1186/s41205-022-00135-x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pittayapat P, Limchaichana-Bolstad N, Willems G, Jacobs R. Three-dimensional cephalometric analysis in orthodontics: a systematic review. Orthod Craniofac Res. 2014;17:69–91. https://doi.org/10.1111/OCR.12034.

    Article 
    PubMed 

    Google Scholar
     

  • Waugh RL. Use of cone beam computerized tomography (CBCT) in orthodontic diagnosis and treatment planning in the presence of a palatally-impacted canine. Orthod Fr. 2014;85:355–61. https://doi.org/10.1051/ORTHODFR/2014021.

    Article 
    PubMed 

    Google Scholar
     

  • Codari M, Caffini M, Tartaglia GM, Sforza C, Baselli G. Computer-aided cephalometric landmark annotation for CBCT data. Int J Comput Assist Radiol Surg. 2017;12:113–21. https://doi.org/10.1007/s11548-016-1453-9.

    Article 
    PubMed 

    Google Scholar
     

  • Torosdagli N, Liberton DK, Verma P, Sincan M, Lee JS, Bagci U. Deep geodesic learning for segmentation and anatomical landmarking. IEEE Trans Med Imaging. 2019;38:919–31. https://doi.org/10.1109/TMI.2018.2875814.

    Article 
    PubMed 

    Google Scholar
     

  • Huang Y, Fan F, Syben C, Roser P, Mill L, Maier A. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med Image Anal. 2021. https://doi.org/10.1016/j.media.2021.102028.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen R, Ma Y, Chen N, Liu L, Cui Z, Lin Y, et al. Structure-aware long short-term memory network for 3D cephalometric landmark detection. IEEE Trans Med Imaging. 2022. https://doi.org/10.1109/TMI.2022.3149281.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang L, Gao Y, Shi F, Li G, Chen KC, Tang Z, et al. Automated segmentation of dental CBCT image with prior-guided sequential random forests. Med Phys. 2016;43:336–46. https://doi.org/10.1118/1.4938267.

    Article 
    PubMed 

    Google Scholar
     

  • Kim YH, Jeon KJ, Lee C, Choi YJ, Jung HI, Han SS. Analysis of the mandibular canal course using unsupervised machine learning algorithm. PLoS ONE. 2021. https://doi.org/10.1371/JOURNAL.PONE.0260194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauwels R, Jacobs R, Singer SR, Mupparapu M. CBCT-based bone quality assessment: are Hounsfield units applicable? Dentomaxillofac Radiol. 2015. https://doi.org/10.1259/DMFR.20140238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung M, Lee M, Hong J, Park S, Lee J, Lee J, et al. Pose-aware instance segmentation framework from cone beam CT images for tooth segmentation. Comput Biol Med. 2020. https://doi.org/10.1016/j.compbiomed.2020.103720.

    Article 
    PubMed 

    Google Scholar
     

  • Gao H, Chae O. Individual tooth segmentation from CT images using level set method with shape and intensity prior. Pattern Recognit. 2010;43:2406–17. https://doi.org/10.1016/J.PATCOG.2010.01.010.

    Article 

    Google Scholar
     

  • Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2015;9351:234–41. https://doi.org/10.1007/978-3-319-24574-4_28/COVER/.

    Article 

    Google Scholar
     

  • Cui Z, Fang Y, Mei L, Zhang B, Yu B, Liu J, et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat Commun. 2022;13:2096. https://doi.org/10.1038/s41467-022-29637-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui Z, Li C, Wang W. Toothnet: automatic tooth instance segmentation and identification from cone beam ct images. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019;63:61–70. https://doi.org/10.1109/CVPR.2019.00653.

    Article 

    Google Scholar
     

  • Chen Y, Du H, Yun Z, Yang S, Dai Z, Zhong L, et al. Automatic segmentation of individual tooth in dental CBCT images from tooth surface map by a multi-task FCN. IEEE Access. 2020;8:97296–309. https://doi.org/10.1109/ACCESS.2020.2991799.

    Article 

    Google Scholar
     

  • Wu X, Chen H, Huang Y, Guo H, Qiu T, Wang L. Center-sensitive and boundary-aware tooth instance segmentation and classification from cone-beam CT. Proc—Int Symp Biomed Imaging. 2020. https://doi.org/10.1109/ISBI45749.2020.9098542.

    Article 

    Google Scholar
     

  • Kats L, Goldman Y, Kahn A. Automatic detection of image sharpening in maxillofacial radiology. BMC Oral Health. 2021;21:1–8. https://doi.org/10.1186/S12903-021-01777-9/FIGURES/4.

    Article 

    Google Scholar
     

  • Deferm JT, Nijsink J, Baan F, Verhamme L, Meijer G, Maal T. Soft tissue-based registration of intraoral scan with cone beam computed tomography scan. Int J Oral Maxillofac Surg. 2022;51:263–8. https://doi.org/10.1016/j.ijom.2021.04.004.

    Article 
    PubMed 

    Google Scholar
     

  • Lee J-H, Kim D-H, Jeong S-N. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26:152–8. https://doi.org/10.1111/odi.13223.

    Article 
    PubMed 

    Google Scholar
     

  • Lo Giudice A, Ronsivalle V, Spampinato C, Leonardi R. Fully automatic segmentation of the mandible based on convolutional neural networks (CNNs). Orthod Craniofac Res. 2021;24(Suppl 2):100–7. https://doi.org/10.1111/OCR.12536.

    Article 
    PubMed 

    Google Scholar
     

  • Kim M-J, Liu Y, Oh SH, Ahn H-W, Kim S-H, Nelson G. Automatic cephalometric landmark identification system based on the multi-stage convolutional neural networks with CBCT combination images. Sensors (Basel). 2021. https://doi.org/10.3390/s21020505.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li Z, Wang SH, Fan RR, Cao G, Zhang YD, Guo T. Teeth category classification via seven-layer deep convolutional neural network with max pooling and global average pooling. Int J Imaging Syst Technol. 2019;29:577–83. https://doi.org/10.1002/IMA.22337.

    Article 

    Google Scholar
     

  • Lahoud P, EzEldeen M, Beznik T, Willems H, Leite A, Van Gerven A, et al. Artificial intelligence for fast and accurate 3-dimensional tooth segmentation on cone-beam computed tomography. J Endod. 2021;47:827–35. https://doi.org/10.1016/J.JOEN.2020.12.020.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang Y, Qin H, Li P, Pei Y, Guo Y, Xu T, et al. Deformable registration of lateral cephalogram and cone-beam computed tomography image. Med Phys. 2021;48:6901–15. https://doi.org/10.1002/mp.15214.

    Article 
    PubMed 

    Google Scholar
     

  • Khan S, Mukati A, Zulfikar S, Bhutto A. Dataset augmentation for machine learning applications of dental radiography. Int J Adv Comput Sci Appl. 2020. https://doi.org/10.14569/IJACSA.2020.0110258.

    Article 

    Google Scholar
     

  • Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35:1285. https://doi.org/10.1109/TMI.2016.2528162.

    Article 
    PubMed 

    Google Scholar
     

  • U.S. LEADERSHIP IN AI: A Plan for Federal Engagement in Developing Technical Standards and Related Tools. 2019. Available at: https://www.nist.gov/system/files/documents/2019/08/10/ai_standards_fedengagement_plan_9aug2019.pdf



  • Source link

    Related Articles