WHO. The top 10 causes of death. 2020. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.
Garoff, M. et al. Carotid calcification in panoramic radiographs: Radiographic appearance and the degree of carotid stenosis. Dentomaxillofac. Radiol. 45(6), 20160147 (2016).
Gelabert, H. A. & Moore, W. S. Carotid endarterectomy: Current status. Curr. Probl. Surg. 28(3), 181–262 (1991).
Jebari-Benslaiman, S. et al. Pathophysiology of atherosclerosis. Int. J. Mol. Sci. 23(6), 3346 (2022).
Mughal, M. M. et al. Symptomatic and asymptomatic carotid artery plaque. Expert Rev. Cardiovasc. Ther. 9(10), 1315–1330 (2011).
Owen, D. R. et al. Imaging of atherosclerosis. Annu. Rev. Med. 62, 25–40 (2011).
Underhill, H. R. et al. MRI of carotid atherosclerosis: Clinical implications and future directions. Nat. Rev. Cardiol. 7(3), 165–173 (2010).
Wintermark, M. et al. High-resolution CT imaging of carotid artery atherosclerotic plaques. Am. J. Neuroradiol. 29(5), 875–882 (2008).
Gaitini, D. & Soudack, M. Diagnosing carotid stenosis by Doppler sonography: State of the art. J. Ultrasound Med. 24(8), 1127–1136 (2005).
Nandalur, K. R. et al. Carotid artery calcification on CT may independently predict stroke risk. AJR Am. J. Roentgenol. 186(2), 547–552 (2006).
Ghassemzadeh, S. et al. Incidental findings detected with panoramic radiography: Prevalence calculated on a sample of 2017 cases treated at a major Italian trauma and cancer centre. Oral Radiol. 37(3), 507–517 (2021).
Maia, P. R. L. et al. Presence and associated factors of carotid artery calcification detected by digital panoramic radiography in patients with chronic kidney disease undergoing hemodialysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 126(2), 198–204 (2018).
Constantine, S. et al. Carotid artery calcification on orthopantomograms (CACO study)—Is it indicative of carotid stenosis?. Aust. Dent. J. 64(1), 4–10 (2019).
Soares, G.-C. & Kurita, L.-M. Prevalence of carotid artery calcifications among 2,500 digital panoramic radiographs of an adult Brazilian population. Medicina Oral, Patologia Oral y Cirugia Bucal 23(3), e256 (2018).
Friedlander, A. H. & Lande, A. Panoramic radiographic identification of carotid arterial plaques. Oral Surg. Oral Med. Oral Pathol. 52(1), 102–104 (1981).
Carter, L. C. Discrimination between calcified triticeous cartilage and calcified carotid atheroma on panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90(1), 108–110 (2000).
Almog, D. M. et al. Evaluation of a training program for detection of carotid artery calcifications on panoramic radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 90(1), 111–117 (2000).
Rubiu, G. et al. Teeth segmentation in panoramic dental X-ray using mask regional convolutional neural network. Appl. Sci. 13(13), 7947 (2023).
Liu, X. et al. Advances in Deep Learning-Based Medical Image Analysis (Health Data Science, 2021).
Kats, L. et al. Atherosclerotic carotid plaque on panoramic radiographs: Neural network detection. Int. J. Comput. Dent. 22(2), 163–169 (2019).
Amitay, M. et al. Deep convolution neural network for screening carotid calcification in dental panoramic radiographs. PLoS Digit. Health. 2(4), e0000081 (2023).
Li, R. et al. Carotid atherosclerotic plaque segmentation in multi-weighted MRI using a two-stage neural network: Advantages of training with high-resolution imaging and histology. Front. Cardiovasc. Med. 10, 1127653 (2023).
Zhu, Y. et al. The application of the nnU-Net-based automatic segmentation model in assisting carotid artery stenosis and carotid atherosclerotic plaque evaluation. Front. Physiol. 13, 1057800 (2022).
Deng, C. et al. Automatic segmentation of ultrasound images of carotid atherosclerotic plaque based on Dense-UNet. Technol. Health Care. 31(1), 165–179 (2023).
Raggi, P. & O’Neill, W. C. Imaging for vascular calcification. Semin. Dial. 30(4), 347–352 (2017).
Mujaj, B. et al. Comparison of CT and CMR for detection and quantification of carotid artery calcification: The Rotterdam Study. J. Cardiovasc. Magn. Reson. 19, 1–7 (2017).
Simonyan, K., Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
Howard, A.G. et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017).
He, K. et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016).
Huang, G. et al. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2017).
Tan, M., Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (PMLR, 2019).
Hu, J., Shen, L., Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. (2018).
Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015).
Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009).
Salehi, S. S. M., Erdogmus, D., Gholipour, A. Tversky loss function for image segmentation using 3D fully convolutional deep networks. In International Workshop on Machine Learning in Medical Imaging (Springer, 2017).
Abraham, N., Khan, N. M. A novel focal tversky loss function with improved attention u-net for lesion segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). (IEEE, 2019).
DeLong, E. R., DeLong, D. M., Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics. 837–845 (1988).
Adadi, A. & Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018).
Van der Velden, B. H. et al. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470 (2022).
Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (2017).
Mortimer, R., Nachiappan, S. & Howlett, D. C. Carotid artery stenosis screening: Where are we now?. Br. J. Radiol. 91(1090), 20170380 (2018).
Friedlander, A. H. Identification of stroke-prone patients by panoramic and cervical spine radiography. Dentomaxillofac. Radiol. 24(3), 160–164 (1995).
Yoon, S. J. et al. Diagnostic accuracy of panoramic radiography in the detection of calcified carotid artery. Dentomaxillofac. Radiol. 37(2), 104–108 (2008).
Janiszewska-Olszowska, J. et al. Carotid artery calcifications on panoramic radiographs. Int. J. Environ. Res. Public Health 19(21), 14056 (2022).
Cha, J.-Y. et al. Panoptic segmentation on panoramic radiographs: Deep learning-based segmentation of various structures including maxillary sinus and mandibular canal. J. Clin. Medi. 10(12), 2577 (2021).
Nasseh, I. & Aoun, G. Carotid artery calcification: A digital panoramic-based study. Diseases 6(1), 15 (2018).
Yoon, S.-J. et al. Interobserver agreement on the diagnosis of carotid artery calcifications on panoramic radiographs. Imaging Sci. Dent. 44(2), 137–141 (2014).
Alves, N., Deana, N. F. & Garay, I. Detection of common carotid artery calcifications on panoramic radiographs: Prevalence and reliability. Int. J. Clin. Exp. Med. 7(8), 1931 (2014).
Rumberger, J. A. et al. Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92(8), 2157–2162 (1995).
Bastos, J. et al. Sensitivity and accuracy of panoramic radiography in identifying calcified carotid atheroma plaques. Braz. J. Oral Sci. 11, 88–93 (2012).
Zhang, L. et al. Advances in CT techniques in vascular calcification. Front. Cardiovasc. Med. 8, 716822 (2021).
Shinjo, K., et al. A detection method for carotid artery calcification in dental panoramic radiographs. In International Workshop on Smart Info-Media Systems in Asia 4 (2009).
Harada, H., et al. Improved detection method for carotid artery calcification in dental panoramic radiographs considering local features. In 2013 International Symposium on Intelligent Signal Processing and Communication Systems (2013).
Sawagashira, T. et al. An automatic detection method for carotid artery calcifications using top-hat filter on dental panoramic radiographs. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 6208–6211 (2011).
Meshram, N. H. et al. Deep learning for carotid plaque segmentation using a dilated U-Net architecture. Ultrason. Imaging 42(4–5), 221–230 (2020).
Zhou, R. et al. Deep learning-based carotid plaque segmentation from B-Mode ultrasound images. Ultrasound Med. Biol. 47(9), 2723–2733 (2021).
Jain, P. K. et al. Hybrid deep learning segmentation models for atherosclerotic plaque in internal carotid artery B-mode ultrasound. Comput. Biol. Med. 136, 104721 (2021).
Ronneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 (Springer, 2015).
Li, Z., Kamnitsas, K. & Glocker, B. Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans. Med. Imaging 40(3), 1065–1077 (2020).
Hashemi, S. R. et al. Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection. IEEE Access 7, 1721–1735 (2018).
Shorten, C. & Khoshgoftaar, T. M. A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–48 (2019).
Naqvi, T. Z. & Lee, M. S. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc. Imaging 7(10), 1025–1038 (2014).
Alman, A. C. et al. Validation of a method for quantifying carotid artery calcification from panoramic radiographs. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116(4), 518–524 (2013).
Wannarong, T. et al. Progression of carotid plaque volume predicts cardiovascular events. Stroke 44(7), 1859–1865 (2013).
Spence, J. D. et al. Carotid plaque area: A tool for targeting and evaluating vascular preventive therapy. Stroke 33(12), 2916–2922 (2002).
Lu, M. et al. Shape and location of carotid atherosclerotic plaque and intraplaque hemorrhage: A high-resolution magnetic resonance imaging study. J. Atheroscler. Thromb. 26(8), 720–727 (2019).
Mackinnon, A. D. et al. Rates and determinants of site-specific progression of carotid artery intima-media thickness: The carotid atherosclerosis progression study. Stroke 35(9), 2150–2154 (2004).
Adams, G. J. et al. Tracking regression and progression of atherosclerosis in human carotid arteries using high-resolution magnetic resonance imaging. Magn. Reson. Imaging 22(9), 1249–1258 (2004).
Kamikawa, R. S. et al. Study of the localization of radiopacities similar to calcified carotid atheroma by means of panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101(3), 374–378 (2006).