Home Dental Radiology Computed tomography texture analysis of mandibular condylar bone marrow in diabetes mellitus patients

Computed tomography texture analysis of mandibular condylar bone marrow in diabetes mellitus patients

by adminjay


  • 1.

    American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Supplement 1):S81–90.

    Article 

    Google Scholar
     

  • 2.

    Verhulst MJL, Loos BG, Gerdes VEA, Teeuw WJ. Evaluating all potential oral complications of diabetes mellitus. Front Endocrinol (Lausanne). 2019;10:56.

    Article 

    Google Scholar
     

  • 3.

    Bascones-Martínez A, González-Febles J, Sanz-Esporrín J. Diabetes and periodontal disease. Review of the literature. Am J Dent. 2014;27(2):63–7.

    PubMed 

    Google Scholar
     

  • 4.

    Mauri-Obradors E, Estrugo-Devesa A, Jané-Salas E, Viñas M, López-López J. Oral manifestations of diabetes mellitus. A systematic review. Med Oral Patol Oral Cir Bucal. 2017;22(5):e586–94.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Collin HL, Niskanen L, Uusitupa M, Töyry J, Collin P, Koivisto AM, Viinamäki H, Meurman JH. Oral symptoms and signs in elderly patients with type 2 diabetes mellitus. A focus on diabetic neuropathy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(3):299–305.

    Article 

    Google Scholar
     

  • 6.

    Uemura M, Toda I, Kawashima W, Yoshimoto G, Fang YR, Xu YJ, Liu Y, Zhang L, Takemura A. Morphological study of the articular disc and capillary of the retrodiscal tissue in a type 2 spontaneous diabetes mellitus rat model. Okajimas Folia Anat Jpn. 2016;92(3–4):53–9.

    Article 

    Google Scholar
     

  • 7.

    Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article 

    Google Scholar
     

  • 8.

    Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys Med. 2017;38:122–39.

    Article 

    Google Scholar
     

  • 9.

    Valdora F, Houssami N, Rossi F, Calabrese M, Tagliafico AS. Rapid review: radiomics and breast cancer. Breast Cancer Res Treat. 2018;169:217–29.

    Article 

    Google Scholar
     

  • 10.

    Gao J, Jiang Q, Zhou B, Chen D. Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: an overview. Math Biosci Eng. 2019;16:6536–61.

    Article 

    Google Scholar
     

  • 11.

    Gentillon H, Stefańczyk L, Strzelecki M, Respondek-Liberska M. Parameter set for computer-assisted texture analysis of fetal brain. BMC Res Notes. 2016;9:496.

    Article 

    Google Scholar
     

  • 12.

    Lazli L, Boukadoum M, Ait MO. Computer-aided diagnosis system of Alzheimer’s disease based on multimodal fusion: tissue quantification based on the hybrid fuzzy-genetic-possibilistic model and discriminative classification based on the SVDD model. Brain Sci. 2019;9:e289.

    Article 

    Google Scholar
     

  • 13.

    Liu R, Li H, Liang F, Yao L, Liu J, Li M, Cao L, Song B. Diagnostic accuracy of different computer-aided diagnostic systems for malignant and benign thyroid nodules classification in ultrasound images: a systematic review and meta-analysis protocol. Medicine (Baltimore). 2019;98:e16227.

    Article 

    Google Scholar
     

  • 14.

    Mosquera-Lopez C, Agaian S, Velez-Hoyos A, Thompson I. Computer-aided prostate cancer diagnosis from digitized histopathology: a review on texture-based systems. IEEE Rev Biomed Eng. 2015;8:98–113.

    Article 

    Google Scholar
     

  • 15.

    Barry B, Buch K, Soto JA, Jara H, Nakhmani A, Anderson SW. Quantifying liver fibrosis through the application of texture analysis to diffusion weighted imaging. Magn Reson Imaging. 2014;32:84–90.

    Article 

    Google Scholar
     

  • 16.

    Alegro CM, Silva AV, Bando SY, et al. Texture analysis of high resolution MRI allows discrimination between febrile and afebrile initial precipitating injury in mesial temporal sclerosis. Magn Reson Med. 2012;68:1647–53.

    Article 

    Google Scholar
     

  • 17.

    Fujimoto K, Tonan T, Azuma S, et al. Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade. Radiology. 2011;258:739–48.

    Article 

    Google Scholar
     

  • 18.

    Jirák D, Dezortová M, Taimr P, Hájek M. Texture analysis of human liver. J Magn Reson Imaging. 2002;15:68–74.

    Article 

    Google Scholar
     

  • 19.

    Mayerhoefer ME, Stelzeneder D, Bachbauer W, et al. Quantitative analysis of lumbar intervertebral disc abnormalities at 3.0 Tesla: value of T(2) texture features and geometric parameters. NMR Biomed. 2012;25:866–72.

    Article 

    Google Scholar
     

  • 20.

    Risse F, Pesic J, Young S, Olsson LE. A texture analysis approach to quantify ventilation changes in hyperpolarised 3He MRI of the rat lung in an asthma model. NMR Biomed. 2012;25:131–41.

    Article 

    Google Scholar
     

  • 21.

    Buch K, Fujita A, Li B, Kawashima Y, Qureshi MM, Sakai O. Using texture analysis to determine human papillomavirus status of oropharyngeal squamous cell carcinomas on CT. AJNR Am J Neuroradiol. 2015;36:1343–8.

    Article 

    Google Scholar
     

  • 22.

    Fujita A, Buch K, Li B, Kawashima Y, Qureshi MM, Sakai O. Difference between HPV-positive and HPV-negative non-oropharyngeal head and neck cancer: texture analysis features on CT. J Comput Assist Tomogr. 2016;40:43–7.

    Article 

    Google Scholar
     

  • 23.

    Kuno H, Qureshi MM, Chapman MN, et al. CT texture analysis potentially predicts local failure in head and neck squamous cell carcinoma treated with chemoradiotherapy. AJNR Am J Neuroradiol. 2017;38:2334–40.

    Article 

    Google Scholar
     

  • 24.

    American Diabetes Association. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Suppl 1):S14–31.

    Article 

    Google Scholar
     

  • 25.

    Szczypinski P, Strzelecki M, Materka A. MaZda—a Software for texture analysis. In: Proc. of ISITC 2007, November 23–23, 2007, Republic of Korea, p. 245–249.

  • 26.

    Strzelecki M, Szczypinski P, Materka A, Klepaczko A. A software tool for automatic classification and segmentation of 2D/3D medical images. Nucl Instrum Methods Phy Res A. 2013;702:137–40.

    Article 

    Google Scholar
     

  • 27.

    Szczypinski P, Strzelecki M, Materka A, Klepaczko A. MaZda-A software package for image texture analysis. Comput Methods Programs Biomed. 2009;94:66–76.

    Article 

    Google Scholar
     

  • 28.

    Ito K, Muraoka H, Hirahara N, Tokunaga S, Sawada E, Kaneda T. Quantitative evaluation of nasopalatine duct using CT texture analysis: comparison of normal and pathological conditions of nasopalatine duct. Dent Radiol. 2020;60(1):5–11.


    Google Scholar
     

  • 29.

    Mohanaiah P, Sathyanarayana P, GuruKumar L. Image texture feature extraction using GLCM approach. Int J Sci ResPubl. 2013;3:2250–3153.


    Google Scholar
     

  • 30.

    Sharma EK, Priyanka E, Kalsh EK, et al. GLCM and its Features. Int J Adv Res Electron Commun Eng. 2015;4:2180–2.


    Google Scholar
     

  • 31.

    Tsai A, Buch K, Fujita A, et al. Using CT texture analysis to differentiate between nasopharyngeal carcinoma and age-matched adenoid controls. Eur J Radiol. 2018;108:208–14.

    Article 

    Google Scholar
     

  • 32.

    Pang H, Chen T, Wang X, Chang Z, Shao S, Zhao J. Quantitative evaluation methods of skin condition based on texture feature parameters. Saudi J Biol Sci. 2017;24(3):514–8.

    Article 

    Google Scholar
     

  • 33.

    Takahara N, Nakagawa S, Sumikura K, Kabasawa Y, Sakamoto I, Harada H. Association of temporomandibular joint pain according to magnetic resonance imaging findings in temporomandibular disorder patients. J Oral Maxillofac Surg. 2017;75(9):1848–55.

    Article 

    Google Scholar
     

  • 34.

    Fave X, Mackin D, Yang J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys. 2015;42(12):6784–97.

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Comment