Home Dental Radiology Deep convolutional neural networks for early detection of interproximal caries using bitewing radiographs: A systematic review

Deep convolutional neural networks for early detection of interproximal caries using bitewing radiographs: A systematic review

by adminjay


  • Kidd EAM Essentials of dental caries. Oxford University Press; 2005. 180 p.

  • Warreth A Dental Caries and Its Management. Int J Dent. Hindawi Limited; 2023:9365845.

  • Lee S, Oh S, Jo J, Kang S, Shin Y, Park JW. Deep learning for early dental caries detection in bitewing radiographs. Sci Rep. 2021;11:16807.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen IH, Lin CH, Lee MK, Chen TE, Lan TH, Chang CM, et al. Convolutional-neural-network-based radiographs evaluation assisting in early diagnosis of the periodontal bone loss via periapical radiograph. J Dent Sci. 2024;19:550–9.

    PubMed 

    Google Scholar
     

  • Grieco P, Jivraj A, Da Silva J, Kuwajima Y, Ishida Y, Ogawa K, et al. Importance of bitewing radiographs for the early detection of interproximal carious lesions and the impact on healthcare expenditure in Japan. Ann Transl Med. 2022;10:2–2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musri N, Christie B, Ichwan SJA, Cahyanto A. Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review. Imaging Sci Dent. 2021;51:1–6.


    Google Scholar
     

  • Karakuş R, Öziç MÜ, Tassoker M. AI-Assisted detection of interproximal, occlusal, and secondary caries on bite-wing radiographs: a single-shot deep learning approach. J Imaging Inf Med. 2024;3146–59

  • Tikhe SV, Naik AM, Bhide SD, Saravanan T, Kaliyamurthie KP Algorithm to Identify Enamel Caries and Interproximal Caries Using Dental Digital Radiographs. In: Proceedings – 6th International Advanced Computing Conference, IACC 2016. Institute of Electrical and Electronics Engineers Inc.; 2016. p. 225–8.

  • Bayraktar Y, Ayan E. Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs. Clin Oral Investig. 2022;26:623–32.

    PubMed 

    Google Scholar
     

  • Sato H, da Silva JD, Lee C, Yonemoto H, Kuwajima Y, Ohyama H, et al. Effects of healthcare policy and education on reading accuracy of bitewing radiographs for interproximal caries. Dentomaxillofacial Radiol. 2021;1–6

  • Azhari AA, Helal N, Sabri LM, Abduljawad A. Artificial intelligence (AI) in restorative dentistry: Performance of AI models designed for detection of interproximal carious lesions on primary and permanent dentition. Digit Health. 2023;9:20552076231216681.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwendicke F, Elhennawy K, Paris S, Friebertshäuser P, Krois J. Deep learning for caries lesion detection in near-infrared light transillumination images: a pilot study. J Dent. 2020;92:1–14

  • Nivethalakshmi S, Justin J Detection of Dental Caries Using NIR Images. In: Proceedings of the 2023 6th International Conference on Recent Trends in Advance Computing, ICRTAC 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 212–7.

  • ForouzeshFar P, Safaei AA, Ghaderi F, Hashemikamangar SS. Dental Caries diagnosis from bitewing images using convolutional neural networks. BMC Oral Health. 2024;24:211.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mallick M, Midhun Kumar A, Govindaraju S, Kumar AS, Kandasamy M, Anitha P Analysis of Panoramic Images using Deep Learning For Dental Disease Identification. In: Proceedings of the 3rd International Conference on Artificial Intelligence and Smart Energy, ICAIS 2023. Institute of Electrical and Electronics Engineers Inc.; 2023. p. 1513–7.

  • Bhan A, Vyas G, Mishra S, Pandey P Detection and grading severity of caries in Dental X-Ray images. In: Proceedings – 2016 International Conference on Micro-Electronics and Telecommunication Engineering, ICMETE 2016. Institute of Electrical and Electronics Engineers Inc.; 2016. p. 375–8.

  • Priya J, Raja SKS, Kiruthika SU. State-of-art technologies, challenges, and emerging trends of computer vision in dental images. Comput Biol Med. 2024;1–19

  • Abraham TS, Subramani S, Jeyakumar V, Sundaram P A Comprehensive Preprocessing Approaches for Tooth Labeling and Classification using Dental Panoramic X-Ray Images. In: 2022 IEEE Delhi Section Conference, DELCON 2022. Institute of Electrical and Electronics Engineers Inc.; 2022.

  • Mărginean AC, Mureşanu S, Hedeşiu M, Dioşan L. Teeth segmentation and carious lesions segmentation in panoramic X-ray images using CariSeg, a networks’ ensemble. Heliyon. 2024;10:e30836.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natto ZS, Olwi A, Abduljawad F. A comparison of the horizontal and vertical bitewing images in detecting approximal caries and interdental bone loss in posterior teeth: A diagnostic accuracy randomized cross over clinical trial. J Dent Sci. 2023;18:645–51.

    PubMed 

    Google Scholar
     

  • Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

    PubMed 

    Google Scholar
     

  • García-Cañas Á, Bonfanti-Gris M, Paraíso-Medina S, Martínez-Rus F, Pradíes G. Diagnosis of interproximal caries lesions in bitewing radiographs using a deep convolutional neural network-based software. Caries Res. 2023;56:503–11.


    Google Scholar
     

  • Pretty IA. Caries detection and diagnosis: Novel technologies. J Dent. 2006;34:727–39.

    PubMed 

    Google Scholar
     

  • Gomez J. Detection and diagnosis of the early caries lesion. BMC Oral Health. 2015;15:S3.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anil S, Porwal P, Porwal A. Transforming dental caries diagnosis through artificial intelligence-based techniques. Cureus. 2023.

  • Bouali R, Mahboub O, Lazaar M. Review of dental diagnosis by deep learning models: trends, applications and challenges. Procedia Comput Sci. 2024. p. 221–8.

  • Lin TJ, Lin YT, Lin YJ, Tseng AY, Lin CY, Lo LT, et al. Auxiliary diagnosis of dental calculus based on deep learning and image enhancement by bitewing radiographs. Bioengineering 2024;11:675.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szabó V, Szabo BT, Orhan K, Veres DS, Manulis D, Ezhov M, et al. Validation of artificial intelligence application for dental caries diagnosis on intraoral bitewing and periapical radiographs. J Dent. 2024;147:105105.

    PubMed 

    Google Scholar
     

  • Vimalarani G, Ramachandraiah U. Automatic diagnosis and detection of dental caries in bitewing radiographs using pervasive deep gradient based LeNet classifier model. Microprocess Microsyst. 2022;94:104654.


    Google Scholar
     

  • Zheng L, Wang H, Mei L, Chen Q, Zhang Y, Zhang H. Artificial intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using convolutional neural networks. Ann Transl Med. 2021;9:763–763.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deepho C, Khlaisuwan V, Pengchai C, Intarachana W, Rakchuai P, Kajhan K, et al. Toward the Development of an Oral-diagnosis Framework: A Case Study of Teeth Segmentation and Numbering in Bitewing Radiographs via YOLO Models. In: International Conference on Cybernetics and Innovations, ICCI 2024. Institute of Electrical and Electronics Engineers Inc.; 2024.

  • Singh P, Sehgal PGV. Black dental caries classification and preparation technique using optimal CNN-LSTM classifier. Multimed Tools Appl. 2021;80:5255–72.


    Google Scholar
     

  • Mao YC, Chen TY, Chou HS, Lin SY, Liu SY, Chen YA, et al. Caries and restoration detection using bitewing film based on transfer learning with CNNs. Sensors. 2021;21:4613.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li KC, Mao YC, Lin MF, Li YQ, Chen CA, Chen TY, et al. Detection of Tooth Position by YOLOv4 and various dental problems based on cnn with bitewing radiograph. IEEE Access. 2024;12:11822–35.


    Google Scholar
     

  • Taleb A, Rohrer C, Bergner B, De Leon G, Rodrigues JA, Schwendicke F, et al. Self-supervised learning methods for label-efficient dental caries classification. Diagnostics 2022;12:1237.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamed Nur M, Vazquez L, Anton Y, Otero C, Giacobino C, Krejci I, et al. Near-infrared transillumination for occlusal carious lesion detection: a retrospective reliability study. Diagnostics 2023;13:36.


    Google Scholar
     

  • Ghaffari M, Zhu Y, Shrestha A. A review of advancements of artificial intelligence in dentistry. Dent Rev. 2024;4:100081.


    Google Scholar
     

  • Ahmed WM, Azhari AA, Fawaz KA, Ahmed HM, Alsadah ZM, Majumdar A, et al. Artificial intelligence in the detection and classification of dental caries. J Prosthet Dent. 2023;

  • Albano D, Galiano V, Basile M, Di Luca F, Gitto S, Messina C, et al. Artificial intelligence for radiographic imaging detection of caries lesions: a systematic review. BMC Oral Health. 2024;1–10

  • Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry – A systematic review. J Dent. 2021;16:508–22.


    Google Scholar
     

  • Maganur PC, Vishwanathaiah S, Mashyakhy M, Abumelha AS, Robaian A, Almohareb T, et al. Development of artificial intelligence models for tooth numbering and detection: a systematic review. Int Dental J. 2024;917–29

  • Dhanak N, Chougule VT, Nalluri K, Kakkad A, Dhimole A, Parihar AS. Artificial intelligence enabled smart phone app for real-time caries detection on bitewing radiographs. Bioinformation. 2024;20:243–7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasa Y, Çelik Ö, Bayrakdar IS, Pekince A, Orhan K, Akarsu S, et al. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol Scand. 2021;79:275–81.

    PubMed 

    Google Scholar
     

  • Roosanty A, Widyaningrum R, Diba SF. Artificial intelligence based on Convolutional Neural Network for detecting dental caries on bitewing and periapical radiographs. J Radiol Dentomaksilofasial Indones. 2022;6:89.


    Google Scholar
     

  • ALTINDAĞ A. UZUN S, BAYRAKDAR İŞ, ÇELİK Ö. Detecting Pulp Stones with Automatic Deep Learning in Bitewing Radiographs: A Pilot Study of Artificial Intelligence. Eur Ann Dent Sci. 2023;50:12–6.


    Google Scholar
     

  • Mahdi SS, Battineni G, Khawaja M, Allana R, Siddiqui MK, Agha D. How does artificial intelligence impact digital healthcare initiatives? A review of AI applications in dental healthcare. Int J Inf Manag Data Insights. 2023;1–10

  • Baydar O, Różyło-Kalinowska I, Futyma-Gąbka K, Sağlam H. The U-Net approaches to evaluation of dental bite-wing radiographs: an artificial intelligence study. Diagnostics. 2023;1–10

  • Schropp L, Sørensen APS, Devlin H, Matzen LH. Use of artificial intelligence software in dental education: A study on assisted proximal caries assessment in bitewing radiographs. Eur J Dent Educ. 2024;28:490–6.

    PubMed 

    Google Scholar
     

  • Chen CC, Wu YF, Aung LM, Lin JCY, Ngo ST, Su JN, et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J Dent Sci. 2023;18:1301–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ammar N, Kühnisch J. Diagnostic performance of artificial intelligence-aided caries detection on bitewing radiographs: a systematic review and meta-analysis. Jpn Dent Sci Rev2024;60:128–36.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pun MHJ. Real-time caries detection of bitewing radiographs using a mobile phone and an artificial neural network: a pilot study. Oral. 2023;3:437–49.


    Google Scholar
     

  • Ramezanzade S, Dascalu TL, Ibragimov B, Bakhshandeh A, Bjørndal L. Prediction of pulp exposure before caries excavation using artificial intelligence: Deep learning-based image data versus standard dental radiographs. J Dent. 2023;138:-7


    Google Scholar
     

  • Devlin H, Williams T, Graham J, Ashley M. The ADEPT study: a comparative study of dentists’ ability to detect enamel-only proximal caries in bitewing radiographs with and without the use of AssistDent artificial intelligence software. Br Dent J. 2021;231:481–5.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brahmi W, Jdey I, Drira F. Exploring the role of Convolutional Neural Networks (CNN) in dental radiography segmentation: a comprehensive systematic literature review. Eng Appl Artif Intell. 2024;1–45

  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ. BMJ Publishing Group; 2021; 372.

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen X, Guo J, Ye J, Zhang M, Liang Y. Detection of proximal caries lesions on bitewing radiographs using deep learning method. Caries Res. 2023;56:455–63.

    CAS 

    Google Scholar
     

  • Kunt L, Kybic J, Nagyová V, Tichý A. Automatic caries detection in bitewing radiographs: part I—deep learning. Clin Oral Investig. 2023;27:7463–71.

    PubMed 

    Google Scholar
     

  • Moran M, Faria M, Giraldi G, Bastos L, Oliveira L, Conci A. Classification of approximal caries in bitewing radiographs using convolutional neural networks. Sensors 2021;21:5192;1–12


    Google Scholar
     

  • Panyarak W, Wantanajittikul K, Suttapak W, Charuakkra A, Prapayasatok S. Feasibility of deep learning for dental caries classification in bitewing radiographs based on the ICCMSTM radiographic scoring system. Oral Radio. 2023;135:272–81.


    Google Scholar
     

  • Panyarak W, Suttapak W, Wantanajittikul K, Charuakkra A, Prapayasatok S. Assessment of YOLOv3 for caries detection in bitewing radiographs based on the ICCMSTM radiographic scoring system. Clin Oral Investig. 2023;27:1731–42.

    PubMed 

    Google Scholar
     

  • Ayhan B, Ayan E, Bayraktar Y. A novel deep learning-based perspective for tooth numbering and caries detection. Clin Oral Investig. 2024;28:178.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karatas O, Cakir NN, Ozsariyildiz SS, Kis HC, Demirbuga S, Gurgan CA. A deep learning approach to dental restoration classification from bitewing and periapical radiographs. Quintessence Int. 2021;52:568–74.

    PubMed 

    Google Scholar
     

  • Tichý A, Kunt L, Nagyová V, Kybic J. Automatic caries detection in bitewing radiographs—Part II: experimental comparison. Clin Oral Investig. 2024;28:133;1–10


    Google Scholar
     

  • Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:1–21


    Google Scholar
     

  • Chaves ET, Vinayahalingam S, van Nistelrooij N, Xi T, Romero VHD, Flügge T, et al. Detection of caries around restorations on bitewings using deep learning; AI-driven secondary caries detection. J Dent. 2024;143:104886;1–6


    Google Scholar
     

  • Kamburoǧlu K, Kolsuz E, Murat S, Yüksel S, Özen T. Proximal caries detection accuracy using intraoral bitewing radiography, extraoral bitewing radiography and panoramic radiography. Dentomaxillofac Radio. 2012;41:450–9.


    Google Scholar
     

  • Ortiz MIG, de Melo Alencar C, De Paula BLF, Magno MB, Maia LC, Silva CM Accuracy of near-infrared light transillumination (NILT) compared to bitewing radiograph for detection of interproximal caries in the permanent dentition: A systematic review and meta-analysis. J Dent. 2020;98:1–11

  • Razaghi M, Komleh HE, Dehghani F, Shahidi Z Innovative diagnosis of dental diseases using YOLO V8 Deep Learning Model. In: Iranian Conference on Machine Vision and Image Processing. 2024;1–5



  • Source link

    Related Articles