Home Dental Radiology Deep-learning approach for caries detection and segmentation on dental bitewing radiographs

Deep-learning approach for caries detection and segmentation on dental bitewing radiographs

by adminjay


  • 1.

    Frencken JE, Sharma P, Stenhouse L, Green D, Laverty D, Dietrich T. Global epidemiology of dental caries and severe periodontitis—a comprehensive review. J Clin Periodontol. 2017;44(Suppl 18):S94-s105.

    PubMed 

    Google Scholar
     

  • 2.

    Stookey GK, Jackson RD, Zandona AG, Analoui M. Dental caries diagnosis. Dent Clin North Am. 1999;43:665-77 vi.

    PubMed 

    Google Scholar
     

  • 3.

    Hellén-Halme K, Petersson GH. Influence of education level and experience on detection of approximal caries in digital dental radiographs. An in vitro study. Swed Dent J. 2010;34:63–9.

    PubMed 

    Google Scholar
     

  • 4.

    Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Leite AF, Van Gerven A, Willems H, Beznik T, Lahoud P, Gaêta-Araujo H, et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Invest. 2020. https://doi.org/10.1007/s00784-020-03544-6.

    Article 

    Google Scholar
     

  • 6.

    Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review. Dentomaxillofac Radiol. 2020;49:20190107.

    PubMed 

    Google Scholar
     

  • 7.

    Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9:3840.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Kılıc MC, Bayrakdar IS, Çelik Ö, Bilgir E, Orhan K, Aydın OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200172.

    PubMed 

    Google Scholar
     

  • 9.

    Yasa Y, Çelik Ö, Bayrakdar IS, Pekince A, Orhan K, Akarsu S, et al. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol Scand. 2020. https://doi.org/10.1080/00016357.2020.1840624.

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129:635–42.

    PubMed 

    Google Scholar
     

  • 11.

    Kim J, Lee HS, Song IS, Jung KH. DeNTNet: Deep Neural Transfer Network for the detection of periodontal bone loss using panoramic dental radiographs. Sci Rep. 2019;9:17615.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9:8495.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Bayrakdar SK, Çelik Ö, Bayrakdar İŞ, Orhan K, Bilgir E, Odabas A, et al. Success of artificial intelligence system in determining alveolar bone loss from dental panoramic radiography images. Cumhuriyet Dent. J. 2020;23:318–24.

  • 14.

    Kositbowornchai S, Siriteptawee S, Plermkamon S, Bureerat S, Chetchotsak D. An artificial neural network for detection of simulated dental caries. Int J Comput Assist Radiol Surg. 2006;1:91–6.


    Google Scholar
     

  • 15.

    Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

    PubMed 

    Google Scholar
     

  • 16.

    Cantu AG, Gehrung S, Krois J, Chaurasia A, Rossi JG, Gaudin R, et al. Detecting caries lesions of different radiographic extension on bitewings using deep learning. J Dent. 2020;100:103425.

    PubMed 

    Google Scholar
     

  • 17.

    Casalegno F, Newton T, Daher R, Abdelaziz M, Lodi-Rizzini A, Schürmann F, et al. Caries detection with near-infrared transillumination using deep learning. J Dent Res. 2019;98:1227–33.

    PubMed 

    Google Scholar
     

  • 18.

    Prados-Privado M, García Villalón J, Martínez-Martínez CH, Ivorra C, Prados-Frutos JC. Dental caries diagnosis and detection using neural networks: a systematic review. J Clin Med. 2020;9:3579.

    PubMed Central 

    Google Scholar
     

  • 19.

    Schwendicke F, Elhennawy K, Paris S, Friebertshäuser P, Krois J. Deep learning for caries lesion detection in near-infrared light transillumination images: a pilot study. J Dent. 2020;92:103260.

    PubMed 

    Google Scholar
     

  • 20.

    Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod. 2019;45:917-22.e5.

    PubMed 

    Google Scholar
     

  • 21.

    Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Özyürek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53:680–9.

    PubMed 

    Google Scholar
     

  • 22.

    Endres MG, Hillen F, Salloumis M, Sedaghat AR, Niehues SM, Quatela O, et al. Development of a deep learning algorithm for periapical disease detection in dental radiographs. Diagnostics (Basel). 2020;10:430.


    Google Scholar
     

  • 23.

    Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48:20180218.

    PubMed 

    Google Scholar
     

  • 24.

    Jeon SJ, Yun JP, Yeom HG, Shin WS, Lee JH, Jeong SH, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200513.

    PubMed 

    Google Scholar
     

  • 25.

    Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337–43.

    PubMed 

    Google Scholar
     

  • 26.

    Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9:9007.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Kuwada C, Ariji Y, Fukuda M, Kise Y, Fujita H, Katsumata A, et al. Deep learning systems for detecting and classifying the presence of impacted supernumerary teeth in the maxillary incisor region on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130:464–9.

    PubMed 

    Google Scholar
     

  • 28.

    Fukuda M, Ariji Y, Kise Y, Nozawa M, Kuwada C, Funakoshi T, et al. Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;130:336–43.

    PubMed 

    Google Scholar
     

  • 29.

    Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg. 2020. https://doi.org/10.1016/j.jormas.2020.12.006.

    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:424–30.

    PubMed 

    Google Scholar
     

  • 31.

    Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, et al. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med. 2020;9:1839.

    PubMed Central 

    Google Scholar
     

  • 32.

    Kwon O, Yong TH, Kang SR, Kim JE, Huh KH, Heo MS, et al. Automatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural network. Dentomaxillofac Radiol. 2020;49:20200185.

    PubMed 

    Google Scholar
     

  • 33.

    Lee JH, Kim DH, Jeong SN. Diagnosis of cystic lesions using panoramic and cone beam computed tomographic images based on deep learning neural network. Oral Dis. 2020;26:152–8.

    PubMed 

    Google Scholar
     

  • 34.

    Watanabe H, Ariji Y, Fukuda M, Kuwada C, Kise Y, Nozawa M, et al. Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study. Oral Radiol. 2020. https://doi.org/10.1007/s11282-020-00485-4.

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Lee JH, Jeong SN. Efficacy of deep convolutional neural network algorithm for the identification and classification of dental implant systems, using panoramic and periapical radiographs: a pilot study. Medicine (Baltimore). 2020;99: e20787.


    Google Scholar
     

  • 36.

    Sukegawa S, Yoshii K, Hara T, Yamashita K, Nakano K, Yamamoto N, et al. Deep neural networks for dental implant system classification. Biomolecules. 2020;10:984.

    PubMed Central 

    Google Scholar
     

  • 37.

    Lee KS, Jung SK, Ryu JJ, Shin SW, Choi J. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs. J Clin Med. 2020;9:392.

    PubMed Central 

    Google Scholar
     

  • 38.

    Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35:301–7.

    PubMed 

    Google Scholar
     

  • 39.

    Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200171.

    PubMed 

    Google Scholar
     

  • 40.

    Kim H, Shim E, Park J, Kim YJ, Lee U, Kim Y. Web-based fully automated cephalometric analysis by deep learning. Comput Methods Programs Biomed. 2020;194:105513.

    PubMed 

    Google Scholar
     

  • 41.

    Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81:52–68.

    PubMed 

    Google Scholar
     

  • 42.

    Sin Ç, Akkaya N, Aksoy S, Orhan K, Öz U. A deep learning algorithm proposal to automatic pharyngeal airway detection and segmentation on CBCT images. Orthod Craniofac Res. 2021. https://doi.org/10.1111/ocr.12480.

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint https://arxiv.org/abs/1409.1556. 2014.

  • 44.

    Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention: Springer; 2015. p. 234–41.

  • 45.

    Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with Digital Imaging Fiber-Optic TransIllumination (DIFOTI): in vitro study. Caries Res. 1997;31:103–10.

    PubMed 

    Google Scholar
     

  • 46.

    Macey R, Walsh T, Riley P, Hogan R, Glenny AM, Worthington HV, et al. Transillumination and optical coherence tomography for the detection and diagnosis of enamel caries. Cochrane Database Syst Rev. 2021;1:Cd013855.

    PubMed 

    Google Scholar
     

  • 47.

    Macey R, Walsh T, Riley P, Glenny AM, Worthington HV, Clarkson JE, et al. Electrical conductance for the detection of dental caries. Cochrane Database Syst Rev. 2021;3:Cd014547.

    PubMed 

    Google Scholar
     

  • 48.

    Takahashi N, Lee C, Da Silva JD, Ohyama H, Roppongi M, Kihara H, et al. A comparison of diagnosis of early stage interproximal caries with bitewing radiographs and periapical images using consensus reference. Dentomaxillofac Radiol. 2019;48:20170450.

    PubMed 

    Google Scholar
     

  • 49.

    Geetha V, Aprameya K, Hinduja DM. Dental caries diagnosis in digital radiographs using back-propagation neural network. Health Inf Sci Syst. 2020;8:1–14.


    Google Scholar
     

  • 50.

    Devito KL, de Souza BF, Felippe Filho WN. An artificial multilayer perceptron neural network for diagnosis of proximal dental caries. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2008;106:879–84.


    Google Scholar
     

  • 51.

    Khan HA, Haider MA, Ansari HA, Ishaq H, Kiyani A, Sohail K, et al. Automated feature detection in dental periapical radiographs using deep learning. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;131:711–20.

    PubMed 

    Google Scholar
     



  • Source link

    Related Articles