Home Dental Radiology Detecting the presence of taurodont teeth on panoramic radiographs using a deep learning-based convolutional neural network algorithm

Detecting the presence of taurodont teeth on panoramic radiographs using a deep learning-based convolutional neural network algorithm

by adminjay


  • Weckwerth GM, Santos CF, Brozoski DT, Pagin CBS, O, Lauris JRP, et al. Taurodontism, root dilaceration, and tooth transposition: a radiographic study of a population with nonsyndromic cleft lip and/or palate. Cleft Palate Cranio-fac J. 2016;53:404–12.

    Article 

    Google Scholar
     

  • Topal BG, Tiras M. Developmental anomalies affecting tooth roots. Dent Med J-R. 2020;2:111–26.


    Google Scholar
     

  • Manjunatha B, Kovvuru SK. Taurodontism: a review on its etiology, prevalence and clinical considerations. J Clin Exp Dent. 2010;2:1–5.


    Google Scholar
     

  • Jafarzadeh H, Azarpazhooh A, Mayhall JT. Taurodontism: a review of the condition and endodontic treatment challenges. Int Endod J. 2008;41:375–88.

    Article 

    Google Scholar
     

  • Bronoosh P, Haghnegahdar A, Dehbozorgi M. Prevalence of taurodontism in premolars and molars in the South of Iran. J Dent Res Dent Clin Dent Prospects. 2012;6:21–4.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Umar E, Altun O, Dedeoglu N. The retrospectıve evaluation of taurodontism prevalence in patiens admitting Inonu Univercity Faculty of Dentistry. Cumhur Dent J. 2014;17:235–43.

    Article 

    Google Scholar
     

  • Nalcacı R, Gorgun S, Karakaya M. Incidence of taurodontism in Turkish population. Turkiye Klinikleri J Dent Sci. 2000;6:178–82.


    Google Scholar
     

  • White SC, Pharoah MJ. Oral radiology-e-book: principles and interpretation. 5th ed. St. Louis, USA: Mosby; 2004.


    Google Scholar
     

  • Luan X, Ito Y, Diekwisch TGH. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn. 2006;235:1167–80.

    Article 

    Google Scholar
     

  • Schwendicke FA, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020;99:769–74.

    Article 

    Google Scholar
     

  • Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol. 2018;73:439–45.

    Article 

    Google Scholar
     

  • Kurt Bayrakdar S, Celik O, Bayrakdar IS, Orhan K, Bilgir E, Odabas A, et al. Success of artificial intelligence system in determining alveolar bone loss from dental panoramic radiography images. Cumhur Dent J. 2020;23:318–24.


    Google Scholar
     

  • Kılıc Coruh M, Bayrakdar IS, Celik O, Bilgir E, Orhan K, Aydın OB, et al. Artificial intelligence system for automatic deciduous tooth detection and numbering in panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200172.

    Article 

    Google Scholar
     

  • Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129:635–42.

    Article 

    Google Scholar
     

  • Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko NSI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051.

    Article 

    Google Scholar
     

  • Thanathornwong B, Suebnukarn S. Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks. Imaging Sci Dent. 2020;50:169.

    Article 

    Google Scholar
     

  • Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9:1–11.


    Google Scholar
     

  • Yasa Y, Celik O, Bayrakdar IS, Pekince A, Orhan K, Akarsu S, et al. An artificial intelligence proposal to automatic teeth detection and numbering in dental bite-wing radiographs. Acta Odontol Scand. 2021;79:275–81.

    Article 

    Google Scholar
     

  • Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81:52–68.

    Article 

    Google Scholar
     

  • Orhan K, Bayrakdar IS, Ezhov M, Kravtsov A, Ozyurek T. Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans. Int Endod J. 2020;53:680–9.

    Article 

    Google Scholar
     

  • Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

    Article 

    Google Scholar
     

  • Ekert T, Krois J, Meinhold L, Elhennavy K, Emare R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod. 2019;45:917–22.

    Article 

    Google Scholar
     

  • Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337–43.

    Article 

    Google Scholar
     

  • Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48:20180218.

    Article 

    Google Scholar
     

  • Jeon SJ, Yun JP, Yeom HG, Shin WS, Lee JH, Jeong SH, et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofac Radiol. 2021;50:20200513.

    Article 

    Google Scholar
     

  • Caliskan S, Tuloglu N, Celik O, Ozdemir C, Kizilaslan S, Bayrak S. A pilot study of a deep learning approach to submerged primary tooth classification and detection. Int J Comput Dent. 2021;24:1–9.

    PubMed 

    Google Scholar
     

  • Blumberg JE, Hylander WL, Goepp RA. Taurodontism: a biometric study. Am J Phys Anthropol. 1971;34:243–55.

    Article 

    Google Scholar
     

  • Shifman A, Chanannel I. Prevalence of taurodontism found in radiographic dental examination of 1,200 young adult Israeli patients. Community Dent Oral Epidemiol. 1978;6:200–3.

    Article 

    Google Scholar
     

  • Olaf R, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015.

  • Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36:257–72.

    Article 

    Google Scholar
     

  • You W, Hao A, Li S, Wang Y, Xia B. Deep learning-based dental plaque detection on primary teeth: a comparison with clinical assessments. BMC Oral Health. 2020;20:141.

    Article 

    Google Scholar
     

  • Mine Y, Iwamoto Y, Okazaki S, Nakamura K, Takeda S, Peng TY, et al. Detecting the presence of supernumerary teeth during the early mixed dentition stage using deep learning algorithms: a pilot study. Int J Paediatr Dent. 2021. https://doi.org/10.1111/ipd.12946.

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald D. Taurodontism. Oral Radiol. 2020;36:129–32.

    Article 

    Google Scholar
     

  • Manjunatha BS, Kovvuru SK. Taurodontism: a review on its etiology, prevalence and clinical considerations. J Clin Exp Dent. 2010;2:e187–90.

    Article 

    Google Scholar
     

  • Tsesis I, Shifman A, Kaufman AY. Taurodontism: an endodontic challenge: report of a case. J Endod. 2003;29:353–5.

    Article 

    Google Scholar
     

  • Cakici F, Benkli Y, Cakıcı E. The prevalence of taurodontism in a north Anatolian dental patient subpopulation. Middle Black Sea J Health Sci. 2015;1:7–10.

    Article 

    Google Scholar
     



  • Source link

    Related Articles