Home Dental Radiology Diffusion-weighted magnetic resonance imaging of mandibular bone marrow: do apparent diffusion coefficient values of the cervical vertebrae and mandible correlate with age?

Diffusion-weighted magnetic resonance imaging of mandibular bone marrow: do apparent diffusion coefficient values of the cervical vertebrae and mandible correlate with age?

by adminjay


  • 1.

    Travlos GS. Normal structure, function, and histology of the bone marrow. Toxicol Pathol. 2006;34(5):548–65. https://doi.org/10.1080/01926230600939856.

    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Ambrosi TH, Schulz TJ. The emerging role of bone marrow adipose tissue in bone health and dysfunction. J Mol Med (Berl). 2017;95(12):1291–301. https://doi.org/10.1007/s00109-017-1604-7.

    Article 

    Google Scholar
     

  • 3.

    Vande Berg BC, Malghem J, Lecouvet FE, Maldague B. Magnetic resonance imaging of normal bone marrow. Eur Radiol. 1998;8(8):1327–34. https://doi.org/10.1007/s003300050547.

    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–71. https://doi.org/10.1023/a:1011513223894.

    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone–new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–45. https://doi.org/10.1210/jc.2012-3634.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: review of clinical implications. Bone. 2019;118:8–15. https://doi.org/10.1016/j.bone.2018.02.008.

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Choi I, Munhoz L, Arita ES. Assessment of osteoporotic alterations in Brazilian postmenopausal women: a retrospective study. J Clin Dental Res. 2018;12(5):ZC34–7. https://doi.org/10.7860/JCDR/2018/34529.11566.

    Article 

    Google Scholar
     

  • 8.

    Fathi Kazerooni A, Pozo JM, McCloskey EV, Saligheh Rad H, Frangi AF. Diffusion MRI for assessment of bone quality; a review of findings in healthy aging and osteoporosis. J Magn Reson Imaging. 2019. https://doi.org/10.1002/jmri.26973.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. Endocrine. 2012;42(1):39–51. https://doi.org/10.1007/s12020-012-9691-2.

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Munhoz L, Ramos EADA, Im DC, Hisatomi M, Yanagi Y, Asaumi J, et al. Application of diffusion-weighted magnetic resonance imaging in the diagnosis of salivary gland diseases: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019. https://doi.org/10.1016/j.oooo.2019.02.020.

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Munhoz L, Abdala Júnior R, Abdala R, Arita ES. Diffusion-weighted magnetic resonance imaging of the paranasal sinuses: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018. https://doi.org/10.1016/j.oooo.2018.07.004.

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Filograna L, Magarelli N, Cellini F, Manfrida S, Leone A, Colosimo C, et al. Diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) values for detection of malignant vertebral bone marrow lesions. Eur Rev Med Pharmacol Sci. 2018;22(3):590–7. https://doi.org/10.26355/eurrev_201802_14273.

    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Munhoz L, Abdala Júnior R, Arita ES. The value of the apparent diffusion coefficient calculated from diffusion-weighted magnetic resonance imaging scans in the differentiation of maxillary sinus inflammatory diseases. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018. https://doi.org/10.1016/j.oooo.2018.11.013.

    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Munhoz L, Abdala Júnior R, Abdala R, Asaumi J, Arita ES. Diffusion-weighted magnetic resonance imaging in maxillary sinuses inflammatory diseases: report of three cases and literature review. J Oral Maxillofac Res. 2018;9(2):e4. https://doi.org/10.5037/jomr.2018.9204.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Goodsitt MM, Hoover P, Veldee MS, Hsueh SL. The composition of bone marrow for a dual-energy quantitative computed tomography technique. A cadaver and computer simulation study. Invest Radiol. 1994;29(7):695–704. https://doi.org/10.1097/00004424-199407000-00006.

    Article 
    PubMed 

    Google Scholar
     

  • 16.

    Chen WT, Shih TT, Chen RC, Lo HY, Chou CT, Lee JM, et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis. J Magn Reson Imaging. 2002;15(3):308–14. https://doi.org/10.1002/jmri.10063.

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Capuani S, Manenti G, Iundusi R, Tarantino U. Focus on diffusion MR investigations of musculoskeletal tissue to improve osteoporosis diagnosis: a brief practical review. Biomed Res Int. 2015;2015:948610. https://doi.org/10.1155/2015/948610.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Munhoz L, Aoki EM, Cortes ARG, de Freitas CF, Arita ES. Osteoporotic alterations in a group of different ethnicity Brazilian postmenopausal women: an observational study. Gerodontology. 2018. https://doi.org/10.1111/ger.12322.

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Munhoz L, Cortes AR, Arita ES. Assessment of osteoporotic alterations in type 2 diabetes: a retrospective study. Dentomaxillofac Radiol. 2017. https://doi.org/10.1259/dmfr.20160414.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Colantonio DF, Saxena SK, Vanier A, Rodkey D, Tintle S, Wagner SC. Cervical spine computed tomography Hounsfield units accurately predict low bone mineral density of the femoral neck. Clin Spine Surg. 2019. https://doi.org/10.1097/BSD.0000000000000879.

    Article 

    Google Scholar
     

  • 21.

    Cheade MCC, Munhoz L, Arita ES, Watanabe PCA. Opportunistic screening for osteoporosis correlating the bone densities of jaws with multislice computed tomography for cervical vertebrae. Clin Lab Res Dent. 2019. https://doi.org/10.11606/issn.2357-8041.clrd.2019.155263.

    Article 

    Google Scholar
     

  • 22.

    Barngkgei I, Joury E, Jawad A. An innovative approach in osteoporosis opportunistic screening by the dental practitioner: the use of cervical vertebrae and cone beam computed tomography with its viewer program. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120(5):651–9. https://doi.org/10.1016/j.oooo.2015.08.008.

    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Schreiber JJ, Anderson PA, Rosas HG, Buchholz AL, Au AG. Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Joint Surg Am. 2011;93(11):1057–63. https://doi.org/10.2106/JBJS.J.00160.

    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Wagner SC, Dworak TC, Grimm PD, Balazs GC, Tintle SM. Measurement of distal ulnar Hounsfield units accurately predicts bone mineral density of the forearm. J Bone Joint Surg Am. 2017;99(8):e38. https://doi.org/10.2106/JBJS.15.01244.

    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Wagner SC, Formby PM, Helgeson MD, Kang DG. Diagnosing the undiagnosed: osteoporosis in patients undergoing lumbar fusion. Spine. 2016;41(21):E1279–83. https://doi.org/10.1097/BRS.0000000000001612.

    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Formby PM, Kang DG, Helgeson MD, Wagner SC. Clinical and radiographic outcomes of transforaminal lumbar interbody fusion in patients with osteoporosis. Global Spine J. 2016;6(7):660–4. https://doi.org/10.1055/s-0036-1578804.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Klemetti E, Kolmakov S, Kröger H. Pantomography in assessment of the osteoporosis risk group. Scand J Dent Res. 1994;102(1):68–72.

    PubMed 

    Google Scholar
     

  • 28.

    Estrugo-Devesa A, Segura-Egea J, García-Vicente L, Schemel-Suárez M, Blanco-Carrrión Á, Jané-Salas E, et al. Correlation between mandibular bone density and skeletal bone density in a Catalonian postmenopausal population. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125(5):495–502. https://doi.org/10.1016/j.oooo.2017.10.003.

    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261(3):700–18. https://doi.org/10.1148/radiol.11110474.

    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Agrawal K, Agarwal Y, Chopra RK, Batra A, Chandra R, Thukral BB. Evaluation of MR spectroscopy and diffusion-weighted MRI in postmenopausal bone strength. Cureus. 2015;7(9):e327. https://doi.org/10.7759/cureus.327.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    He J, Fang H, Na LX. Vertebral bone marrow diffusivity in normal adults with varying bone densities at 3T diffusion-weighted imaging. Acta Radiol. 2018;59(1):89–96. https://doi.org/10.1177/0284185117704235.

    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Momeni M, Asadzadeh M, Mowla K, Hanafi MG, Gharibvand MM, Sahraeizadeh A. Sensitivity and specificity assessment of DWI and ADC for the diagnosis of osteoporosis in postmenopausal patients. Radiol Med. 2020;125(1):68–74. https://doi.org/10.1007/s11547-019-01080-2.

    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Pernow Y, Hauge EM, Linder K, Dahl E, Sääf M. Bone histomorphometry in male idiopathic osteoporosis. Calcif Tissue Int. 2009;84(6):430–8. https://doi.org/10.1007/s00223-009-9239-5.

    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Griffith JF, Yeung DK, Ahuja AT, Choy CW, Mei WY, Lam SS, et al. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone. 2009;44(6):1092–6. https://doi.org/10.1016/j.bone.2009.02.022.

    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Kiebzak GM. Age-related bone changes. Exp Gerontol. 1991;26(2–3):171–87. https://doi.org/10.1016/0531-5565(91)90010-j.

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Schellinger D, Lin CS, Lim J, Hatipoglu HG, Pezzullo JC, Singer AJ. Bone marrow fat and bone mineral density on proton MR spectroscopy and dual-energy X-ray absorptiometry: their ratio as a new indicator of bone weakening. AJR Am J Roentgenol. 2004;183(6):1761–5. https://doi.org/10.2214/ajr.183.6.01831761.

    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Hatipoglu HG, Selvi A, Ciliz D, Yuksel E. Quantitative and diffusion MR imaging as a new method to assess osteoporosis. AJNR Am J Neuroradiol. 2007;28(10):1934–7. https://doi.org/10.3174/ajnr.A0704.

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Yeung DK, Wong SY, Griffith JF, Lau EM. Bone marrow diffusion in osteoporosis: evaluation with quantitative MR diffusion imaging. J Magn Reson Imaging. 2004;19(2):222–8. https://doi.org/10.1002/jmri.10453.

    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Griffith JF, Yeung DK, Antonio GE, Wong SY, Kwok TC, Woo J, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8. https://doi.org/10.1148/radiol.2413051858.

    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Tang GY, Lv ZW, Tang RB, Liu Y, Peng YF, Li W, et al. Evaluation of MR spectroscopy and diffusion-weighted MRI in detecting bone marrow changes in postmenopausal women with osteoporosis. Clin Radiol. 2010;65(5):377–81. https://doi.org/10.1016/j.crad.2009.12.011.

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Coutel X, Olejnik C, Marchandise P, Delattre J, Béhal H, Kerckhofs G, et al. A novel microCT method for bone and marrow adipose tissue alignment identifies key differences between mandible and tibia in rats. Calcif Tissue Int. 2018;103(2):189–97. https://doi.org/10.1007/s00223-018-0397-1.

    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Lanske B, Rosen C. Bone marrow adipose tissue: the first 40 years. J Bone Miner Res. 2017;32(6):1153–6. https://doi.org/10.1002/jbmr.3140.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Mavropoulos A, Odman A, Ammann P, Kiliaridis S. Rehabilitation of masticatory function improves the alveolar bone architecture of the mandible in adult rats. Bone. 2010;47(3):687–92. https://doi.org/10.1016/j.bone.2010.06.025.

    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Allen MR. The effects of bisphosphonates on jaw bone remodeling, tissue properties, and extraction healing. Odontology. 2011;99(1):8–17. https://doi.org/10.1007/s10266-010-0153-0.

    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Blake GM, Fogelman I. How important are BMD accuracy errors for the clinical interpretation of DXA scans? J Bone Miner Res. 2008;23(4):457–62. https://doi.org/10.1359/jbmr.071119.

    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Zhang L, Wang Q, Wu X, Zhao A, Feng J, Zhang H, et al. Baseline bone marrow ADC value of diffusion-weighted MRI: a potential independent predictor for progression and death in patients with newly diagnosed multiple myeloma. Eur Radiol. 2021;31(4):1843–52. https://doi.org/10.1007/s00330-020-07295-6.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles