Home Orthodontics Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts

Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts

by adminjay


  • 1.

    Raggatt, L. J. & Partridge, N. C. Cellular and molecular mechanisms of bone remodeling. J. Biol. Chem. 285, 25103–25108. https://doi.org/10.1074/jbc.R109.041087 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Li, Y., Jacox, L. A., Little, S. H. & Ko, C. C. Orthodontic tooth movement: the biology and clinical implications. Kaohsiung J. Med. Sci.s 34, 207–214. https://doi.org/10.1016/j.kjms.2018.01.007 (2018).

    Article 

    Google Scholar
     

  • 3.

    Zainal Ariffin, S. H., Yamamoto, Z., Zainol Abidin, I. Z., Megat Abdul Wahab, R. & Zainal Ariffin, Z. Cellular and molecular changes in orthodontic tooth movement. Sci. World J. 11, 1788–1803. https://doi.org/10.1100/2011/761768 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Jiang, N. et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Frontiers Oral Biol. 18, 1–8. https://doi.org/10.1159/000351894 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Feng, X. & McDonald, J. M. Disorders of bone remodeling. Ann. Rev. Pathol. 6, 121–145. https://doi.org/10.1146/annurev-pathol-011110-130203 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tyrovola, J. B., Spyropoulos, M. N., Makou, M. & Perrea, D. Root resorption and the OPG/RANKL/RANK system: a mini review. J. Oral Sci. 50, 367–376. https://doi.org/10.2334/josnusd.50.367 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Talic, N. F. Adverse effects of orthodontic treatment: a clinical perspective. Saudi Dent. J. 23, 55–59. https://doi.org/10.1016/j.sdentj.2011.01.003 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Savvidis, C., Tournis, S. & Dede, A. D. Obesity and bone metabolism. Hormones 17, 205–217. https://doi.org/10.1007/s42000-018-0018-4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 9.

    Bluher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298. https://doi.org/10.1038/s41574-019-0176-8 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Pirih, F. et al. Adverse effects of hyperlipidemia on bone regeneration and strength. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 27, 309–318. https://doi.org/10.1002/jbmr.541 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Gonnelli, S., Caffarelli, C. & Nuti, R. Obesity and fracture risk. Clin. Cases Miner. Bone Metab. Off. J. Ital. Soc. Osteoporos. Miner. Metab. Skelet. Dis. 11, 9–14. https://doi.org/10.11138/ccmbm/2014.11.1.009 (2014).

    Article 

    Google Scholar
     

  • 12.

    Alabdulkarim, M., Bissada, N., Al-Zahrani, M., Ficara, A. & Siegel, B. Alveolar bone loss in obese subjects. J. Int. Acad. Periodontol. 7, 34–38 (2005).

    PubMed 

    Google Scholar
     

  • 13.

    Cavagni, J. et al. Obesity and hyperlipidemia modulate alveolar bone loss in wistar rats. J. Periodontol. 87, e9-17. https://doi.org/10.1902/jop.2015.150330 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Verzeletti, G. N., Gaio, E. J., Linhares, D. S. & Rosing, C. K. Effect of obesity on alveolar bone loss in experimental periodontitis in Wistar rats. J. Appl. Oral Sci. Revista FOB 20, 218–221. https://doi.org/10.1590/s1678-77572012000200016 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Boden, G. Obesity and free fatty acids. Endocrinol. Metab. Clin. N. Ame. 37, 635–646, viii–ix, https://doi.org/10.1016/j.ecl.2008.06.007 (2008).

  • 16.

    Ebbert, J. O. & Jensen, M. D. Fat depots, free fatty acids, and dyslipidemia. Nutrients 5, 498–508. https://doi.org/10.3390/nu5020498 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Nemecz, M. et al. The distinct effects of palmitic and oleic acid on pancreatic beta cell function: the elucidation of associated mechanisms and effector molecules. Frontiers Pharmacol. 9, 1554. https://doi.org/10.3389/fphar.2018.01554 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Ulloth, J. E., Casiano, C. A. & De Leon, M. Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J. Neurochem. 84, 655–668. https://doi.org/10.1046/j.1471-4159.2003.01571.x (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Mu, Y. M. et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology 142, 3590–3597. https://doi.org/10.1210/endo.142.8.8293 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 20.

    Gunaratnam, K., Vidal, C., Boadle, R., Thekkedam, C. & Duque, G. Mechanisms of palmitate-induced cell death in human osteoblasts. Biol. Open 2, 1382–1389. https://doi.org/10.1242/bio.20136700 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Gillet, C. et al. Oleate abrogates palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology 156, 4081–4093. https://doi.org/10.1210/en.2015-1303 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Belal, S. A. et al. Modulatory effect of linoleic and oleic acid on cell proliferation and lipid metabolism gene expressions in primary bovine satellite cells. Anim. Cells Syst. 22, 324–333. https://doi.org/10.1080/19768354.2018.1517824 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Bierman, E. L., Dole, V. P. & Roberts, T. N. An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes 6, 475–479. https://doi.org/10.2337/diab.6.6.475 (1957).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 24.

    Taskinen, M. R., Bogardus, C., Kennedy, A. & Howard, B. V. Multiple disturbances of free fatty acid metabolism in noninsulin-dependent diabetes. Effect of oral hypoglycemic therapy. J. Clin. Investig. 76, 637–644. https://doi.org/10.1172/JCI112016 (1985).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Prisby, R. D., Swift, J. M., Bloomfield, S. A., Hogan, H. A. & Delp, M. D. Altered bone mass, geometry and mechanical properties during the development and progression of type 2 diabetes in the Zucker diabetic fatty rat. J. Endocrinol. 199, 379–388. https://doi.org/10.1677/JOE-08-0046 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Soares, E. A., Nakagaki, W. R., Garcia, J. A. & Camilli, J. A. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. J. Bone Miner. Metab. 30, 419–425. https://doi.org/10.1007/s00774-011-0345-x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Cistola, D. P. & Small, D. M. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. J. Clin. Investig. 87, 1431–1441. https://doi.org/10.1172/JCI115149 (1991).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Kissebah, A. H., Alfarsi, S., Adams, P. W. & Wynn, V. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia 12, 563–571. https://doi.org/10.1007/bf01220632 (1976).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Alsahli, A. et al. Palmitic acid reduces circulating bone formation markers in obese animals and impairs osteoblast activity via C16-ceramide accumulation. Calcif. Tissue Int. 98, 511–519. https://doi.org/10.1007/s00223-015-0097-z (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Drosatos-Tampakaki, Z. et al. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 29, 1183–1195. https://doi.org/10.1002/jbmr.2150 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Lin, W., McCulloch, C. & Cho, M. Differentiation of periodontal ligament fibroblasts into osteoblasts during socket healing after tooth extraction in the rat. Anat. Rec. 240, 492–506. https://doi.org/10.1002/ar.1092400407 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 32.

    Basdra, E. K. & Komposch, G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur. J. Orthod. 19, 615–621. https://doi.org/10.1093/ejo/19.6.615 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Otero, L., Garcia, D. A. & Wilches-Buitrago, L. Expression and presence of OPG and RANKL mRNA and protein in human periodontal ligament with orthodontic force. Gene Regul. Syst. Biol. 10, 15–20. https://doi.org/10.4137/GRSB.S35368 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Yamaguchi, M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod. Craniofac. Res. 12, 113–119. https://doi.org/10.1111/j.1601-6343.2009.01444.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Alves, L. B. et al. Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel. J. Appl. Oral Sci. Revista FOB 23, 206–214. https://doi.org/10.1590/1678-775720140462 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Cho, M. I., Matsuda, N., Lin, W. L., Moshier, A. & Ramakrishnan, P. R. In vitro formation of mineralized nodules by periodontal ligament cells from the rat. Calcif. Tissue Int. 50, 459–467. https://doi.org/10.1007/bf00296778 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Cliff, T. S. & Dalton, S. Metabolic switching and cell fate decisions: implications for pluripotency, reprogramming and development. Curr. Opin. Genet. Dev. 46, 44–49. https://doi.org/10.1016/j.gde.2017.06.008 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Paiva, K. B. S. & Granjeiro, J. M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog. Mol. Biol. Transl. Sci. 148, 203–303. https://doi.org/10.1016/bs.pmbts.2017.05.001 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Filipowska, J., Tomaszewski, K. A., Niedzwiedzki, L., Walocha, J. A. & Niedzwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 20, 291–302. https://doi.org/10.1007/s10456-017-9541-1 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Heymsfield, S. B. & Wadden, T. A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 376, 1492. https://doi.org/10.1056/NEJMc1701944 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Kaila, B. & Raman, M. Obesity: a review of pathogenesis and management strategies. Can. J. Gastroenterol. Journal canadien de gastroenterologie 22, 61–68. https://doi.org/10.1155/2008/609039 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Fujita, Y. & Maki, K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC Obes. 3, 1. https://doi.org/10.1186/s40608-016-0082-8 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Montalvany-Antonucci, C. C. et al. High-fat diet disrupts bone remodeling by inducing local and systemic alterations. J. Nutr. Biochem. 59, 93–103. https://doi.org/10.1016/j.jnutbio.2018.06.006 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Faibish, D., Ott, S. M. & Boskey, A. L. Mineral changes in osteoporosis: a review. Clin. Orthop. Relat. Res. 443, 28–38. https://doi.org/10.1097/01.blo.0000200241.14684.4e (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Lazner, F., Gowen, M., Pavasovic, D. & Kola, I. Osteopetrosis and osteoporosis: two sides of the same coin. Hum. Mol. Genet. 8, 1839–1846. https://doi.org/10.1093/hmg/8.10.1839 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 46.

    Ferreri, C. et al. Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers: recent advancements in analytics and diagnostics. Diagnostics https://doi.org/10.3390/diagnostics7010001 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Inoue, C. et al. SMARCD1 regulates senescence-associated lipid accumulation in hepatocytes. NPJ Aging Mech. Dis. 3, 11. https://doi.org/10.1038/s41514-017-0011-1 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Imanikia, S., Sheng, M., Castro, C., Griffin, J. L. & Taylor, R. C. XBP-1 remodels lipid metabolism to extend longevity. Cell Rep. 28, 581–589 e584, https://doi.org/10.1016/j.celrep.2019.06.057 (2019).

  • 49.

    Goudeau, J. et al. Fatty acid desaturation links germ cell loss to longevity through NHR-80/HNF4 in C. elegans. PLoS Biol. 9, e1000599. https://doi.org/10.1371/journal.pbio.1000599 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Hamilton, L. K. et al. Aberrant lipid metabolism in the forebrain niche suppresses adult neural stem cell proliferation in an animal model of Alzheimer’s disease. Cell Stem Cell 17, 397–411. https://doi.org/10.1016/j.stem.2015.08.001 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 51.

    Hickson-Bick, D. L., Sparagna, G. C., Buja, L. M. & McMillin, J. B. Palmitate-induced apoptosis in neonatal cardiomyocytes is not dependent on the generation of ROS. Am. J. Physiol. Heart Circ. Physiol. 282, H656–H664. https://doi.org/10.1152/ajpheart.00726.2001 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Paumen, M. B., Ishida, Y., Muramatsu, M., Yamamoto, M. & Honjo, T. Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J. Biol. Chem. 272, 3324–3329. https://doi.org/10.1074/jbc.272.6.3324 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 53.

    Shimabukuro, M., Zhou, Y. T., Levi, M. & Unger, R. H. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 95, 2498–2502. https://doi.org/10.1073/pnas.95.5.2498 (1998).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 54.

    Blazquez, C., Galve-Roperh, I. & Guzman, M. D. novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 14, 2315–2322. https://doi.org/10.1096/fj.00-0122com (2000).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Tang, D. G., La, E., Kern, J. & Kehrer, J. P. Fatty acid oxidation and signaling in apoptosis. Biol. Chem. 383, 425–442. https://doi.org/10.1515/BC.2002.046 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 56.

    Kawase, T., Howard, G. A., Roos, B. A. & Burns, D. M. Diverse actions of calcitonin gene-related peptide on intracellular free Ca2+ concentrations in UMR 106 osteoblastic cells. Bone 16, 379S-384S. https://doi.org/10.1016/8756-3282(95)00016-7 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 57.

    Jacobs, C., Grimm, S., Ziebart, T., Walter, C. & Wehrbein, H. Osteogenic differentiation of periodontal fibroblasts is dependent on the strength of mechanical strain. Arch. Oral Biol. 58, 896–904. https://doi.org/10.1016/j.archoralbio.2013.01.009 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 58.

    Mi, H. W., Lee, M. C., Fu, E., Chow, L. P. & Lin, C. P. Highly efficient multipotent differentiation of human periodontal ligament fibroblasts induced by combined BMP4 and hTERT gene transfer. Gene Ther. 18, 452–461. https://doi.org/10.1038/gt.2010.158 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 59.

    Seubbuk, S., Sritanaudomchai, H., Kasetsuwan, J. & Surarit, R. High glucose promotes the osteogenic differentiation capability of human periodontal ligament fibroblasts. Mol. Med. Rep. 15, 2788–2794. https://doi.org/10.3892/mmr.2017.6333 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 60.

    Kushwaha, P., Wolfgang, M. J. & Riddle, R. C. Fatty acid metabolism by the osteoblast. Bone 115, 8–14. https://doi.org/10.1016/j.bone.2017.08.024 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 61.

    Cardoso, G. B. et al. Fatty acid is a potential agent for bone tissue induction: In vitro and in vivo approach. Exp. Biol. Med. 242, 1765–1771. https://doi.org/10.1177/1535370217731104 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Zainabadi, K., Liu, C. J. & Guarente, L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS ONE 12, e0178520. https://doi.org/10.1371/journal.pone.0178520 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Yang, L., Wei, J., Sheng, F. & Li, P. Attenuation of palmitic acid-induced lipotoxicity by chlorogenic acid through activation of SIRT1 in hepatocytes. Mol. Nutr. Food Res. 63, e1801432. https://doi.org/10.1002/mnfr.201801432 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 64.

    Lim, J. H. et al. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1alpha complex. J. Biol. Chem. 288, 7117–7126. https://doi.org/10.1074/jbc.M112.415729 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015. https://doi.org/10.1126/science.1094637 (2004).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Kageyama, A. et al. Palmitic acid induces osteoblastic differentiation in vascular smooth muscle cells through ACSL3 and NF-kappaB, novel targets of eicosapentaenoic acid. PLoS ONE 8, e68197. https://doi.org/10.1371/journal.pone.0068197 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Swagell, C. D., Henly, D. C. & Morris, C. P. Expression analysis of a human hepatic cell line in response to palmitate. Biochem. Biophys. Res. Commun. 328, 432–441. https://doi.org/10.1016/j.bbrc.2004.12.188 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 68.

    Schmidt, S. et al. Regulation of lipid metabolism-related gene expression in whole blood cells of normo- and dyslipidemic men after fish oil supplementation. Lipids Health Dis. 11, 172. https://doi.org/10.1186/1476-511X-11-172 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Yang, C. et al. The response of gene expression associated with lipid metabolism, fat deposition and fatty acid profile in the longissimus dorsi muscle of Gannan yaks to different energy levels of diets. PLoS ONE 12, e0187604. https://doi.org/10.1371/journal.pone.0187604 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Diaz, R. et al. Apoptosis-like cell death induction and aberrant fibroblast properties in human incisional hernia fascia. Am. J. Pathol. 178, 2641–2653. https://doi.org/10.1016/j.ajpath.2011.02.044 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Buranasin, P. et al. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS ONE 13, e0201855. https://doi.org/10.1371/journal.pone.0201855 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Chukkapalli, S. S. & Lele, T. P. Periodontal cell mechanotransduction. Open Biol. https://doi.org/10.1098/rsob.180053 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Chan, S. H. et al. Oleic acid activates MMPs up-regulation through SIRT1/PPAR-gamma inhibition: a probable linkage between obesity and coronary arterial disease. J. Biochem. 160, 217–225. https://doi.org/10.1093/jb/mvw028 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 74.

    Soto-Guzman, A., Navarro-Tito, N., Castro-Sanchez, L., Martinez-Orozco, R. & Salazar, E. P. Oleic acid promotes MMP-9 secretion and invasion in breast cancer cells. Clin. Exp. Metas. 27, 505–515. https://doi.org/10.1007/s10585-010-9340-1 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 75.

    Sindhu, S., Al-Roub, A., Koshy, M., Thomas, R. & Ahmad, R. Palmitate-induced MMP-9 expression in the human monocytic cells is mediated through the TLR4-MyD88 dependent mechanism. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 39, 889–900. https://doi.org/10.1159/000447798 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 76.

    Doronzo, G. et al. Oleic acid increases synthesis and secretion of VEGF in rat vascular smooth muscle cells: role of oxidative stress and impairment in obesity. Int. J. Mol. Sci. 14, 18861–18880. https://doi.org/10.3390/ijms140918861 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    von Bremen, J., Wagner, J. & Ruf, S. Correlation between body mass index and orthodontic treatment outcome. Angle Orthod. 83, 371–375. https://doi.org/10.2319/070612-555.1 (2013).

    Article 

    Google Scholar
     

  • 78.

    Saloom, H. F., Papageorgiou, S. N., Carpenter, G. H. & Cobourne, M. T. Impact of obesity on orthodontic tooth movement in adolescents: a prospective clinical cohort study. J. Dent. Res. 96, 547–554. https://doi.org/10.1177/0022034516688448 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 79.

    Yan, B. et al. Obesity attenuates force-induced tooth movement in mice with the elevation of leptin level: a preliminary translational study. Am. J. Transl. Res. 10, 4107–4118 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Kilkenny, C., Browne, W. J., Cuthi, I., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. Vet. Clin. Pathol. 41, 27–31. https://doi.org/10.1111/j.1939-165X.2012.00418.x (2012).

    Article 
    PubMed 

    Google Scholar
     

  • 81.

    Amend, S. R., Valkenburg, K. C. & Pienta, K. J. Murine Hind Limb Long Bone Dissection and Bone Marrow Isolation. J. Vis. Exp. JoVE https://doi.org/10.3791/53936 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • 82.

    Cappellen, D. et al. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B. J. Biol. Chem. 277, 21971–21982. https://doi.org/10.1074/jbc.M200434200 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 83.

    Kirschneck, C. et al. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci. Rep. 7, 14751. https://doi.org/10.1038/s41598-017-15281-0 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Symmank, J. et al. Mechanically-induced GDF15 secretion by periodontal ligament fibroblasts regulates osteogenic transcription. Sci. Rep. 9, 11516. https://doi.org/10.1038/s41598-019-47639-x (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Lossdorfer, S., Kraus, D., Abuduwali, N. & Jager, A. Intermittent administration of PTH(1–34) regulates the osteoblastic differentiation of human periodontal ligament cells via protein kinase C- and protein kinase A-dependent pathways in vitro. J. Periodontal. Res. 46, 318–326. https://doi.org/10.1111/j.1600-0765.2011.01345.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 87.

    Muluke, M. et al. Diet-Induced Obesity and Its Differential Impact on Periodontal Bone Loss. J. Dent. Res. 95, 223–229. https://doi.org/10.1177/0022034515609882 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles