Home Dental Radiology Dynamic changes in tooth displacement and bone morphometry induced by orthodontic force

Dynamic changes in tooth displacement and bone morphometry induced by orthodontic force

by adminjay


  • Fu, T., Liu, S., Zhao, H., Cao, M. & Zhang, R. Effectiveness and safety of minimally invasive orthodontic tooth movement acceleration: A systematic review and meta-analysis. J. Dent. Res. 98(13), 1469 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • MacDonald, L. et al. Efficacy and safety of different interventions to accelerate maxillary canine retraction following premolar extraction: A systematic review and network meta-analysis. Orthod. Craniofac. Res. 24(1), 17 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Gao, J. et al. The significance of utilizing a corticotomy on periodontal and orthodontic outcomes: A systematic review and meta-analysis. Biology (Basel). 10(8), 803 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miles, P. & Fisher, E. Assessment of the changes in arch perimeter and irregularity in the mandibular arch during initial alignment with the AcceleDent Aura appliance vs no appliance in adolescents: A single-blind randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 150(6), 928 (2016).

    Article 

    Google Scholar
     

  • Arqub, S. A. et al. The effect of the local administration of biological substances on the rate of orthodontic tooth movement: A systematic review of human studies. Prog. Orthod. 22(1), 5 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Deng, L., Chen, Y., Guo, J., Han, X. & Guo, Y. Roles and mechanisms of YAP/TAZ in orthodontic tooth movement. J. Cell. Physiol. 236(11), 7792–7800 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, Y., Jacox, L. A., Little, S. H. & Ko, C.-C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J Med Sci. 34(4), 207 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Behm, C. et al. MMPs and TIMPs expression levels in the periodontal ligament during orthodontic tooth movement: A systematic review of in vitro and in vivo studies. Int. J. Mol. Sci. 22(13), 6967 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, Y., Zhan, Q., Bao, M., Yi, J. & Li, Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: Up-date in a new decade. Int. J. Oral Sci. 13(1), 20 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klein, Y. et al. Immunorthodontics: In vivo gene expression of orthodontic tooth movement. Sci. Rep. 10(1), 8172 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pilon, J. J., Kuijpers-Jagtman, A. M. & Maltha, J. C. Magnitude of orthodontic forces and rate of bodily tooth movement. An experimental study. Am. J. Orthod. Dentofac. Orthop.: Off. Publ. Am. Assoc. Orthod. Const. Soc. Am. Board Orthod. 110(1), 16 (1996).

    CAS 
    Article 

    Google Scholar
     

  • van Leeuwen, E. J., Maltha, J. C. & Kuijpers-Jagtman, A. M. Tooth movement with light continuous and discontinuous forces in beagle dogs. Eur. J. Oral Sci. 107(6), 468 (1999).

    PubMed 
    Article 

    Google Scholar
     

  • Krishnan, V. & Davidovitch, Z. E. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthoped. 129(4), 469 (2006).

    Article 

    Google Scholar
     

  • Campos, M. J. et al. The role of orthodontic tooth movement in bone and root mineral density: A study of patients submitted and not submitted to orthodontic treatment. Med Sci Monit. 18(12), Cr752 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Wang, C., Cao, L., Yang, C. & Fan, Y. A novel method to quantify longitudinal orthodontic bone changes with in vivo micro-CT data. J Healthc. Eng. 2018, 1651097 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nogueira, A. V. B. et al. Experimental models of orthodontic tooth movement and their effects on periodontal tissues remodelling. Arch. Oral Biol. 130, 105216 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fleissig, O. et al. Analytical methodology to measure periodontal bone morphometry following orthodontic tooth movement in mice. Eur. J. Orthod. 43(6), 665 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Cadenas de Llano-Pérula, M., Zong, C., Van Dessel, J., Kuijpers-Jagtman, A. M. & Willems, G. 3D quantification of in vivo orthodontic tooth movement in rats by means of micro-computed tomography. Clin. Oral Investig. 26(5), 3911–3920 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Kirschneck, C. et al. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging. Ann. Anat. 195(6), 539 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Zhang, J.-N., Lu, H.-P., Bao, X.-C., Shi, Y. & Zhang, M.-H. Evaluation of the long-term stability of micro-screws under different loading protocols: A systematic review. Braz. Oral Res. 33, e046 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Oliver, V. et al. Psychometric assessment of the Rat Grimace Scale and development of an analgesic intervention score. PLoS ONE 9(5), e97882 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Van Dessel, J. et al. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur. J. Oral Implantol. 10(1), 95 (2017).

    PubMed 

    Google Scholar
     

  • Van Dessel, J. et al. Quantification of bone quality using different cone beam computed tomography devices: Accuracy assessment for edentulous human mandibles. Eur. J. Oral Implantol. 9(4), 411 (2016).

    PubMed 

    Google Scholar
     

  • Chatterjee, M. et al. A robust methodology for the quantitative assessment of the rat jawbone microstructure. Int. J. Oral Sci. 9(2), 87 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou, Y. et al. Mechanism of catechol-O-methyltransferase regulating orofacial pain induced by tooth movement. Biomed. Res. Int. 2021, 4229491 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, J., Zhang, P. Y., Guan, Z. Q., Wang, G. X. & Kou, B. Exploration of effect of Odanacatib on inhibiting orthodontic recurrence in rats and on CatK and IGF-1 mRNA. Eur. Rev. Med. Pharmacol. Sci. 23(8), 3151 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. & Yang, K. Clinical research: Low-level laser therapy in accelerating orthodontic tooth movement. BMC Oral Health 21(1), 324 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ortega, A. J., Campbell, P. M., Hinton, R., Naidu, A. & Buschang, P. H. Local application of zoledronate for maximum anchorage during space closure. Am. J. Orthod. Dentofac. Orthop. 142(6), 780 (2012).

    Article 

    Google Scholar
     

  • Proff, P. et al. Local vascularization during orthodontic tooth movement in a split mouth rat model—A MRI study. Biomedicines. 8(12), 632 (2020).

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • Qi, J. et al. Effect of a DPP-4 inhibitor on orthodontic tooth movement and associated root resorption. Biomed. Res. Int. 2020, 7189084 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Trelenberg-Stoll, V., Drescher, D., Wolf, M. & Becker, K. Automated tooth segmentation as an innovative tool to assess 3D-tooth movement and root resorption in rodents. Head Face Med. 17(1), 3 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Madan, M. S., Liu, Z. J., Gu, G. M. & King, G. J. Effects of human relaxin on orthodontic tooth movement and periodontal ligaments in rats. Am. J. Orthod. Dentofac. Orthop.: Off. Publ. Am. Assoc. Orthod. Const. Soc. Am. Board Orthod. 131(1), 8.e1 (2007).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Dynamic evaluation of orthodontically-induced tooth movement, root resorption, and alveolar bone remodeling in rats by in vivo micro-computed tomography. Med Sci Monit. 24, 8306 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Xu, X., Zhou, J., Yang, F., Wei, S. & Dai, H. Using micro-computed tomography to evaluate the dynamics of orthodontically induced root resorption repair in a rat model. PLoS ONE 11(3), e0150135 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Macrophages mediate corticotomy-accelerated orthodontic tooth movement. Sci Rep. 8(1), 16788 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Lira Dos Santos, E. J. et al. Orthodontic tooth movement alters cementocyte ultrastructure and cellular cementum proteome signature. Bone 2021, 116139 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kirschneck, C., Bauer, M., Gubernator, J., Proff, P. & Schröder, A. Comparative assessment of mouse models for experimental orthodontic tooth movement. Sci. Rep. 10(1), 12154 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tsuchiya, S. et al. Physiological distal drift in rat molars contributes to acellular cementum formation. Anat. Rec. (Hoboken). 296(8), 1255 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Sicher, H. & Weinmann, J. P. Bone growth and physiologic tooth movement. Am. J. Orthod. Oral Surg. 30(3), C109 (1944).

    Article 

    Google Scholar
     

  • Pu, H. & Hua, Y. Hydrogen sulfide regulates bone remodeling and promotes orthodontic tooth movement. Mol. Med. Rep. 16(6), 9415 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang, H.-W. et al. Effects of orthodontic tooth movement on alveolar bone density. Clin. Oral Investig. 16(3), 679 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Ott, S. M. Chapter 2—Bone Biology and Effects of Pharmaceutical Intervention on Bone Quality (2017), 29.

  • Trelenberg-Stoll, V., Wolf, M., Busch, C., Drescher, D. & Becker, K. Standardized assessment of bone micromorphometry around teeth following orthodontic tooth movement: A µCT split-mouth study in mice. J. Orofac. Orthop. = Fortschritte der Kieferorthopadie: Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie https://doi.org/10.1007/s00056-021-00336-9 (2021).

    Article 

    Google Scholar
     

  • Chaushu, S., Klein, Y., Mandelboim, O., Barenholz, Y. & Fleissig, O. Immune changes induced by orthodontic forces: A critical review. J. Dent. Res. 2021, 220345211016285 (2021).


    Google Scholar
     

  • Kim, H. J. et al. In ovariectomy-induced osteoporotic rat models, BMP-2 substantially reversed an impaired alveolar bone regeneration whereas PDGF-BB failed. Clin. Oral Investig. 25(11), 6159 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Brasil, S. C. et al. Influence of a high-fat diet in the progression of apical periodontitis. J Endod. 47(4), 600 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Muramatsu, R. et al. Guanabenz inhibits alveolar bone resorption in a rat model of periodontitis. J. Pharmacol. Sci. 147(3), 294 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deng, J. et al. A novel modified-curcumin promotes resolvin-like activity and reduces bone loss in diabetes-induced experimental periodontitis. J. Inflamm Res. 14, 5337 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pereira, L. J. et al. Aerobic and resistance training improve alveolar bone quality and interferes with bone-remodeling during orthodontic tooth movement in mice. Bone 138, 115496 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lee, S.-H. et al. Effect of nicotine on orthodontic tooth movement and bone remodeling in rats. Korean J. Orthod. 51(4), 282 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, H. et al. The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in the compression area during orthodontic relapse. Eur. J. Orthod. 42(3), 347 (2020).

    PubMed 
    Article 

    Google Scholar
     

  • Zhou, Y., He, X. & Zhang, D. Study of bone remodeling in corticotomy-assisted orthodontic tooth movement in rats. J. Cell Biochem. 120(9), 15952 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Machibya, F. M. et al. Effects of bone regeneration materials and tooth movement timing on canine experimental orthodontic treatment. Angle Orthod. 88(2), 171 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • d’Apuzzo, F. et al. Biomarkers of periodontal tissue remodeling during orthodontic tooth movement in Mice and Men: Overview and clinical relevance. Sci. World J. 2013, 105873 (2013).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Related Articles