Home Orthodontics Effect of self-assembling peptide P 11 -4 on orthodontic treatment-induced carious lesions

Effect of self-assembling peptide P 11 -4 on orthodontic treatment-induced carious lesions

by adminjay

  • 1.

    Staudt, C. B., Lussi, A., Jacquet, J. & Kiliaridis, S. White spot lesions around brackets: in vitro detection by laser fluorescence. Eur J Oral Sci 112, 237–243, https://doi.org/10.1111/j.1600-0722.2004.00133.x (2004).

  • 2.

    Mattousch, T. J., van der Veen, M. H. & Zentner, A. Caries lesions after orthodontic treatment followed by quantitative light-induced fluorescence: a 2-year follow-up. Eur J Orthod 29, 294–298, https://doi.org/10.1093/ejo/cjm008 (2007).

  • 3.

    Höchli, D., Hersberger-Zurfluh, M., Papageorgiou, S. N. & Eliades, T. Interventions for orthodontically induced white spot lesions: a systematic review and meta-analysis. Eur J Orthod 39, 122–133, https://doi.org/10.1093/ejo/cjw065 (2017).

  • 4.

    Ren, Y., Jongsma, M. A., Mei, L., van der Mei, H. C. & Busscher, H. J. Orthodontic treatment with fixed appliances and biofilm formation–a potential public health threat? Clin Oral Investig 18, 1711–1718, https://doi.org/10.1007/s00784-014-1240-3 (2014).

  • 5.

    Gorelick, L., Geiger, A. M. & Gwinnett, A. J. Incidence of white spot formation after bonding and banding. Am J Orthod 81, 93–98 (1982).

  • 6.

    Richter, A. E., Arruda, A. O., Peters, M. C. & Sohn, W. Incidence of caries lesions among patients treated with comprehensive orthodontics. Am J Orthod Dentofacial Orthop 139, 657–664, https://doi.org/10.1016/j.ajodo.2009.06.037 (2011).

  • 7.

    Featherstone, J. D. B. & Chaffee, B. W. The Evidence for Caries Management by Risk Assessment (CAMBRA(R)). Adv Dent Res 29, 9–14, https://doi.org/10.1177/0022034517736500 (2018).

  • 8.

    Gao, S. S., Zhang, S., Mei, M. L., Lo, E. C. & Chu, C. H. Caries remineralisation and arresting effect in children by professionally applied fluoride treatment – a systematic review. BMC Oral Health 16, 12, https://doi.org/10.1186/s12903-016-0171-6 (2016).

  • 9.

    Petersson, L. G., Twetman, S. & Pakhomov, G. N. The efficiency of semiannual silane fluoride varnish applications: a two-year clinical study in preschool children. J Public Health Dent 58, 57–60 (1998).

  • 10.

    de Oliveira, B. H. & Dos Santos, A. P. Semiannual Fluoride Applications in Low-Risk Toddlers May Not Be More Effective Than Toothbrushing Instruction and Dietary Counseling in Controlling Dental Caries. J Evid Based Dent Pract 16, 246–248, https://doi.org/10.1016/j.jebdp.2016.11.006 (2016).

  • 11.

    de Oliveira, P. R., Fonseca, A. B., Silva, E. M., Coutinho, T. C. & Tostes, M. A. Remineralizing potential of CPP-ACP cremes with and without fluoride in artificial enamel lesions. Aust Dent J, https://doi.org/10.1111/adj.12305 (2015).

  • 12.

    Muller, F. et al. Elemental depth profiling of fluoridated hydroxyapatite: saving your dentition by the skin of your teeth? Langmuir 26, 18750–18759, https://doi.org/10.1021/la102325e (2010).

  • 13.

    Bergman, G. & Lind, P. O. A quantitative microradiographic study of incipient enamel caries. J Dent Res 45, 1477–1484 (1966).

  • 14.

    Pandya, M. & Diekwisch, T. G. H. Enamel biomimetics-fiction or future of dentistry. Int J Oral Sci 11, 8, https://doi.org/10.1038/s41368-018-0038-6 (2019).

  • 15.

    Rechmann, P., Chaffee, B. W., Rechmann, B. M. T. & Featherstone, J. D. B. Changes in Caries Risk in a Practice-Based Randomized Controlled Trial. Adv Dent Res 29, 15–23, https://doi.org/10.1177/0022034517737022 (2018).

  • 16.

    Urquhart, O. et al. Nonrestorative Treatments for Caries: Systematic Review and Network Meta-analysis. J Dent Res, 22034518800014, https://doi.org/10.1177/0022034518800014 (2018).

  • 17.

    Fernandez-Ferrer, L. et al. Enamel remineralization therapies for treating postorthodontic white-spot lesions: A systematic review. J Am Dent Assoc 149, 778–786 e772, https://doi.org/10.1016/j.adaj.2018.05.010 (2018).

  • 18.

    Jablonski-Momeni, A. & Heinzel-Gutenbrunner, M. Efficacy of the self-assembling peptide P11-4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces. J Orofac Orthop 75, 175–190, https://doi.org/10.1007/s00056-014-0211-2 (2014).

  • 19.

    Amaechi, B. T. Remineralisation – the buzzword for early MI caries management. Br Dent J 223, 173–182, https://doi.org/10.1038/sj.bdj.2017.663 (2017).

  • 20.

    Alkilzy, M., Santamaria, R. M., Schmoeckel, J. & Splieth, C. H. Treatment of Carious Lesions Using Self-Assembling Peptides. Adv Dent Res 29, 42–47, https://doi.org/10.1177/0022034517737025 (2018).

  • 21.

    Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res 53, 284–295, https://doi.org/10.1159/000493031 (2018).

  • 22.

    Jablonski-Momeni, A. et al. Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep 9, 269, https://doi.org/10.1038/s41598-018-36536-4 (2019).

  • 23.

    Kind, L. et al. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide. J Dent Res 96, 790–797, https://doi.org/10.1177/0022034517698419 (2017).

  • 24.

    Kirkham, J. et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res 86, 426–430, 86/5/426 (2007).

  • 25.

    Brunton, P. A. et al. Treatment of early caries lesions using biomimetic self-assembling peptides – a clinical safety trial. Br Dent J 215, E6, https://doi.org/10.1038/sj.bdj.2013.741 (2013).

  • 26.

    Mannaa, A., Sedlakova, P., Bommer, C., di Bella, E. & Krejci, I. In IADR Vol. 96th General Session (London, GB, 2018).

  • 27.

    Bröseler, F. et al. Randomised clinical trial investigating self-assembling peptide P11-4 in the treatment of early caries. Clin Oral Investig, https://doi.org/10.1007/s00784-019-02901-4 (2019).

  • 28.

    Nyvad, B. & Baelum, V. Nyvad Criteria for Caries Lesion Activity and Severity Assessment: A Validated Approach for Clinical Management and Research. Caries Res 52, 397–405, https://doi.org/10.1159/000480522 (2018).

  • 29.

    Mortensen, D., Gizani, S., Salamara, O., Sifakakis, I. & Twetman, S. Monitoring regression of post-orthodontic lesions with impedance spectroscopy: a pilot study. Eur J Orthod, https://doi.org/10.1093/ejo/cjy075 (2018).

  • 30.

    Longbottom, C., Huysmans, M. C., Pitts, N. B., Los, P. & Bruce, P. G. Detection of dental decay and its extent using a.c. impedance spectroscopy. Nat Med 2, 235–237 (1996).

  • 31.

    Cohen, J. E. The association between CarieScan Pro readings and histologic depth of caries in non cavitated occlusal lesion in vitro. MS (Master of Science) thesis, University of Iowa, (2013).

  • 32.

    Alkilzy, M., Tarabaih, A., Santamaria, R. M. & Splieth, C. H. Self-assembling Peptide P11-4 and Fluoride for Regenerating Enamel. J Dent Res 97, 148–154, https://doi.org/10.1177/0022034517730531 (2018).

  • 33.

    Tassery, H. et al. Use of new minimum intervention dentistry technologies in caries management. Aust Dent J 58(Suppl 1), 40–59, https://doi.org/10.1111/adj.12049 (2013).

  • 34.

    Schmidlin, P., Zobrist, K., Attin, T. & Wegehaupt, F. In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides. J Appl Oral Sci 24, 31–36, https://doi.org/10.1590/1678-775720150352 (2016).

  • 35.

    Kamal, D., Hassanein, H., Elkassas, D. & Hamza, H. Comparative evaluation of remineralizing efficacy of biomimetic self-assembling peptide on artificially induced enamel lesions: An in vitro study. J Conserv Dent 21, 536–541, https://doi.org/10.4103/JCD.JCD_123_18 (2018).

  • 36.

    Pandis, N., Chung, B., Scherer, R. W., Elbourne, D. & Altman, D. G. CONSORT 2010 statement: extension checklist for reporting within person randomised trials. BMJ 357, j2835, https://doi.org/10.1136/bmj.j2835 (2017).

  • 37.

    Pearl, J. Causality. Models, Reasoning, and Inference. 2nd edn, (Cambridge University Press, 2009).

  • 38.

    Harrell, F. E., Jr. & Slaughter, J. C. In Biostatistics for Biomedical Research (2001–2019).

  • 39.

    Lesaffre, E., Philstrom, B., Needleman, I. & Worthington, H. The design and analysis of split-mouth studies: what statisticians and clinicians should know. Stat Med 28, 3470–3482, https://doi.org/10.1002/sim.3634 (2009).

  • 40.

    Hujoel, P. P. & Loesche, W. J. Efficiency of split-mouth designs. J Clin Periodontol 17, 722–728, https://doi.org/10.1111/j.1600-051x.1990.tb01060.x (1990).

  • 41.

    Kenward, M. G. & Roger, J. H. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).

  • 42.

    Committee for Proprietary Medicinal Products (CPMP). Points to consider on adjustment for baseline covariates. Statistics in Medicine 23, 701–709, https://doi.org/10.1002/sim.1647 (2004).

  • 43.

    Harrell, F. E., Jr. Regression modeling strategies. With applications to linear models, logistic and ordinal regression, and survival analysis. 2nd edn, ix, 5, 19, 104, (Springer, 2015).

  • 44.

    Wasserstein, L. R. & Lazar, N. A. The ASA’s Statement on p-Values: Context, Process, and Purpose. The American Statistician 70, 129–133, https://doi.org/10.1080/00031305.2016.1154108 (2016).

  • 45.

    Takahashi, F. et al. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand 74, 142–147, https://doi.org/10.3109/00016357.2015.1066850 (2016).

  • 46.

    Wierichs, R. J., Kogel, J., Lausch, J., Esteves-Oliveira, M. & Meyer-Lueckel, H. Effects of Self-Assembling Peptide P11-4, Fluorides, and Caries Infiltration on Artificial Enamel Caries Lesions in vitro. Caries Res 51, 451–459, https://doi.org/10.1159/000477215 (2017).

  • 47.

    Krejci, I., Lieber, C. M. & Lutz, F. Time required to remove totally bonded tooth-colored posterior restorations and related tooth substance loss. Dent Mater 11, 34–40, https://doi.org/10.1016/0109-5641(95)80006-9 (1995).

  • 48.

    Senn, S. Cross-over Trials in Clinical Research. 2nd edn, (John Wiley & Sons, Ltd, 2002).

  • 49.

    Boersma, J. G., van der Veen, M. H., Lagerweij, M. D., Bokhout, B. & Prahl-Andersen, B. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res 39, 41–47, https://doi.org/10.1159/000081655 (2005).

  • 50.

    van der Veen, M. H., Attin, R., Schwestka-Polly, R. & Wiechmann, D. Caries outcomes after orthodontic treatment with fixed appliances: do lingual brackets make a difference? Eur J Oral Sci 118, 298–303, https://doi.org/10.1111/j.1600-0722.2010.00733.xEOS733 (2010).

  • 51.

    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur J Epidemiol 31, 337–350, https://doi.org/10.1007/s10654-016-0149-3 (2016).

  • 52.

    Jones, B. & Kenward, M. G. Design and Analysis of Cross-Over Trials. 3rd edn, (CRC Press, 2015).

  • Source link

    Related Articles