Home Dental Radiology Evaluation of a metal artifact reduction algorithm and an adaptive image noise optimization filter in the estimation of peri-implant fenestration defects using cone beam computed tomography: an in-vitro study

Evaluation of a metal artifact reduction algorithm and an adaptive image noise optimization filter in the estimation of peri-implant fenestration defects using cone beam computed tomography: an in-vitro study

by adminjay


  • 1.

    Brånemark PI, Adell R, Breine U, Hansson BO, Lindström J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg. 1969;3:81–100.

    Article 

    Google Scholar
     

  • 2.

    Wennerberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants. 2010;25:63–74.

    PubMed 

    Google Scholar
     

  • 3.

    Brunski JB, Puleo DA, Nanci A. Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments. Int J Oral Maxillofac Implants. 1999;15:15–46.


    Google Scholar
     

  • 4.

    De Cicco V, Barresi M, Fantozzi MPT, Cataldo E, Parisi V, Manzoni D. Oral implant-prostheses: new teeth for a brighter brain. PLoS ONE. 2016;11:e0148715.

    Article 

    Google Scholar
     

  • 5.

    Hashim D, Cionca N, Courvoisier DS, Mombelli A. A systematic review of the clinical survival of zirconia implants. Clin Oral Investig. 2016;20:1403–17.

    Article 

    Google Scholar
     

  • 6.

    Hsu J-T, Huang H-L, Tsai M-T, Wu AY-J, Tu M-G, Fuh L-J. Effects of the 3D bone-to-implant contact and bone stiffness on the initial stability of a dental implant: micro-CT and resonance frequency analyses. Int J Oral Maxillofac Surg. 2013;42:276–80.

    Article 

    Google Scholar
     

  • 7.

    Huang HL, Chang YY, Lin DJ, Li YF, Chen KT, Hsu JT. Initial stability and bone strain evaluation of the immediately loaded dental implant: an in vitro model study. Clin Oral Implants Res. 2011;22:691–8.

    Article 

    Google Scholar
     

  • 8.

    Hsu JT, Fuh LJ, Tu MG, Li YF, Chen KT, Huang HL. The effects of cortical bone thickness and trabecular bone strength on noninvasive measures of the implant primary stability using synthetic bone models. Clin Implant Dent Relat Res. 2013;15:251–61.

    Article 

    Google Scholar
     

  • 9.

    de Azevedo-Vaz SL, Vasconcelos Kde F, Neves FS, Melo SL, Campos PS, Haiter-Neto F, et al. Detection of periimplant fenestration and dehiscence with the use of two scan modes and the smallest voxel sizes of a cone-beam computed tomography device. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:121–7.

    Article 

    Google Scholar
     

  • 10.

    Haghgoo JM, Shokri A, Khodadoustan A, Khoshhal M, Rabienejad N, Farhadian M. Comparison of the accuracy of the cone-beam computed tomography with digital direct intraoral radiography, in assessment of periodontal osseous lesions. Avicenna J Dent Res. 2014;6:1–6.

    Article 

    Google Scholar
     

  • 11.

    Eskandarloo A, Saati S, Ardakani MP, Jamalpour M, Gholi Mezerji NM, Akheshteh V. Diagnostic accuracy of three cone beam computed tomography systems and periapical radiography for detection of fenestration around dental implants. Contemp Clin Dent. 2018;9:376–81.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Haghgoo JM, Shokri A, Khodadoustan A, Khoshhal M, Rabienejad N, Farhadian M. Comparison the accuracy of the cone-beam computed tomography with digital direct intraoral radiography, in assessment of periodontal osseous lesions. Avicenna J Dent Res. 2014;6:1–6.

    Article 

    Google Scholar
     

  • 13.

    Bagis N, Kolsuz ME, Kursun S, Orhan K. Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: an in vitro study. BMC Oral Health. 2015;28(15):64. https://doi.org/10.1186/s12903-015-0046-2.

    Article 

    Google Scholar
     

  • 14.

    Kamburoğlu K, Kolsuz E, Murat S, Eren H, Yüksel S, Paksoy CS. Assessment of buccal marginal alveolar peri-implant and periodontal defects using a cone beam CT system with and without the application of metal artifact reduction mode. Dentomaxillofac Radiol. 2013;42:20130176. https://doi.org/10.1259/dmfr.20130176.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.

    Article 

    Google Scholar
     

  • 16.

    Schulze RK, Berndt D, d’Hoedt B. On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res. 2010;21:100–7.

    Article 

    Google Scholar
     

  • 17.

    Kolsuz ME, Bagis N, Orhan K, Avsever H, Demiralp KO. Comparison of the influence of FOV sizes and different voxel resolutions for the assessment of periodontal defects. Dentomaxillofac Radiol. 2015;44:20150070. https://doi.org/10.1259/dmfr.20150070.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Ren L, Yin FF, Chetty IJ, Jaffray DA, Jin JY. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT). Med Phys. 2012;39:5099–110.

    Article 

    Google Scholar
     

  • 19.

    Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artefacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007;67:924–32.

    Article 

    Google Scholar
     

  • 20.

    Zhang X, Wang J. Metal artifact reduction in X-ray computed tomography by constrained optimization. Med Phys. 2011;38(2):701–11.

    Article 

    Google Scholar
     

  • 21.

    Bamberg F, Dierks A, Nikolaou K, et al. Metal artifact reduction by dual-energy computed tomography using monoenergetic extrapolation. Eur Radiol. 2011;21:1424–9.

    Article 

    Google Scholar
     

  • 22.

    Thakur A, Pargain V, Singh P, Chauhan SR, Khare PK, Mor P. An efficient fuzzy and morphology based approach to metal artifact reduction from dental CBCT image. In: 2017 ınternational conference on computing, communication, and automation (ICCCA), 2017, pp 1220–1223. https://doi.org/10.1109/CCAA.2017.8229985.

  • 23.

    Minnema J, van Eijnatten M, Hendriksen AA, Liberton N, Pelt DM, Batenburg KJ, Forouzanfar T, Wolff J. Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Med Phys. 2019;46:5027–35.

    Article 

    Google Scholar
     

  • 24.

    Parrone MT, Bechara B, Deahl ST 2nd, Ruparel NB, Katkar R, Noujeim M. Cone beam computed tomography image optimization to detect root fractures in endodontically treated teeth: an in-vitro (phantom) study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:613–20.

    Article 

    Google Scholar
     

  • 25.

    Bagis N, Eren H, Kolsuz ME, Kurt MH, Avsever H, Orhan K. Comparison of the burr and chemically induced periodontal defects using different field-of-view sizes and voxel resolutions. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;125:260–7.

    Article 

    Google Scholar
     

  • 26.

    Bayrak S, Orhan K, Kursun Çakmak ES, Görürgöz C, Odabaşı O, Yilmaz D, Atakan C. Oral evaluation of a metal artifact reduction algorithm and an optimization filter in the estimation of peri-implant dehiscence defects by using cone beam computed tomography: an in-vitro study. Surg Oral Med Oral Pathol Oral Radiol. 2020;130:209–16.

    Article 

    Google Scholar
     

  • 27.

    Noujeim M, Prihoda T, Langlais R, Nummikoski P. Evaluation of high-resolution cone beam computed tomography in the detection of simulated interradicular bone lesions. Dentomaxillofac Radiol. 2009;38:156–62.

    Article 

    Google Scholar
     

  • 28.

    Jacob C. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46.

    Article 

    Google Scholar
     

  • 29.

    Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 2006;27:861–74.

    Article 

    Google Scholar
     

  • 30.

    Vadiati Saberi B, Khosravifard N, Ghandari F, Hadinezhad A. Detection of peri-implant bone defects using cone-beam computed tomography and digital periapical radiography with parallel and oblique projection. Imaging Sci Dent. 2019;49:265–72.

    Article 

    Google Scholar
     

  • 31.

    Song D, Shujaat S, de Faria VK, Huang Y, Politis C, Lambrichts I, Jacobs R. Diagnostic accuracy of CBCT versus intraoral imaging for assessment of peri-implant bone defects. BMC Med Imaging. 2021;10(21):23.

    Article 

    Google Scholar
     

  • 32.

    Nikneshan S, Valizadeh S, Javanmard A, Alibakhshi L. Effect of voxel size on detection of external root resorption defects using cone beam computed tomography. Iran J Radiol. 2016;13:e34985.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Yamamoto-Silva FP, de Oliveira Siqueira CF, Silva M, Fonseca RB, Santos AA, Estrela C, de Freitas Silva BS. Influence of voxel size on cone-beam computed tomography-based detection of vertical root fractures in the presence of intracanal metallic posts. Imaging Sci Dent. 2018;48:177–84.

    Article 

    Google Scholar
     

  • 34.

    Kurt MH, Bağış N, Evli C, Atakan C, Orhan K. Comparison of the different voxel sizes in the estimation of peri-implant fenestration defects using cone beam computed tomography: an ex vivo study. Int J Implant Dent. 2020;6:58. https://doi.org/10.1186/s40729-020-00254-2.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Shahmirzadi S, Sharaf RA, Saadat S, Moore WS, Geha H, Tamimi D, Demirturk KH. Assessment of the efficiency of a pre- versus post-acquisition metal artifact reduction algorithm in the presence of 3 different dental implant materials using multiple CBCT settings: an in vitro study. Imaging Sci Dent. 2021;51:1–7.

    Article 

    Google Scholar
     

  • 36.

    Fontenele RC, Farias Gomes A, Nejaim Y, Freitas DQ. Do the tube current and metal artifact reduction influence the diagnosis of vertical root fracture in a tooth positioned in the vicinity of a zirconium implant? A CBCT study. Clin Oral Investig. 2021;25:2229–35.

    Article 

    Google Scholar
     

  • 37.

    de-Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, Vasconcelos Kde F, Campos PS, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:550–6.

    Article 

    Google Scholar
     

  • 38.

    Queiroz PM, Santaella GM, da Paz TD, Freitas DQ. Evaluation of a metal artefact reduction tool on different positions of a metal object in the FOV. Dentomaxillofac Radiol. 2017;46:20160366.

    Article 

    Google Scholar
     

  • 39.

    Bechara B, Alex McMahan C, Moore WS, Noujeim M, Teixeira FB, Geha H. Cone beam CT scans with and without artefact reduction in root fracture detection of endodontically treated teeth. Dentomaxillofac Radiol. 2013;42:20120245. https://doi.org/10.1259/dmfr.20120245.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Bezerra IS, Neves FS, Vasconcelos TV, Ambrosano GM, Freitas DQ. Influence of the artefact reduction algorithm of Picasso Trio CBCT system on the diagnosis of vertical root fractures in teeth with metal posts. Dentomaxillofac Radiol. 2015;44:20140428. https://doi.org/10.1259/dmfr.20140428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Queiroz PM, Oliveira ML, Groppo FC, Haiter-Neto F, Freitas DQ. Evaluation of metal artefact reduction in cone-beam computed tomography images of different dental materials. Clin Oral Investig. 2018;22:419–23.

    Article 

    Google Scholar
     

  • 42.

    Costa ED, Brasil DM, Queiroz PM, Verner FS, Junqueira RB, Freitas DQ. Use of the metal artefact reduction tool in the identification of fractured endodontic instruments in cone-beam computed tomography. Int Endod J. 2020;53:506–12.

    Article 

    Google Scholar
     

  • 43.

    Vasconcelos TV, Bechara BB, McMahan CA, Freitas DQ, Noujeim M. Evaluation of artifacts generated by zirconium implants in cone-beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:265–72.

    Article 

    Google Scholar
     

  • 44.

    Bechara B, McMahan CA, Geha H, Noujeim M. Evaluation of a cone beam CT artefact reduction algorithm. Dentomaxillofac Radiol. 2012;41:422–8.

    Article 

    Google Scholar
     

  • 45.

    Demirturk Kocasarac H, Ustaoglu G, Bayrak S, Katkar R, Geha H, Deahl ST 2nd, Mealey BL, Danaci M, Noujeim M. Evaluation of artifacts generated by titanium, zirconium, and titanium-zirconium alloy dental implants on MRI, CT, and CBCT images: a phantom study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;127:535–44.

    Article 

    Google Scholar
     



  • Source link

    Related Articles