Home Dental Radiology Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography

Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography

by adminjay


  • 1.

    Choi JW. Assessment of panoramic radiography as a national oral examination tool: review of the literature. Imaging Sci Dent. 2011;41:1–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Nardi C, Calistri L, Grazzini G, Desideri I, Lorini C, Occhipinti M, et al. Is Panoramic radiography an accurate imaging technique for the detection of endodontically treated asymptomatic apical periodontitis? J Endod. 2018;44:1500–8.

    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Ohashi Y, Ariji Y, Katsumata A, Fujita H, Nakayama M, Fukuda M, et al. Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs. Dentomaxillofac Radiol. 2016;45:20150419.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Muramatsu C, Matsumoto T, Hayashi T, Hara T, Katsumata A, Zhou X, et al. Automated measurement of mandibular cortical width on dental panoramic radiographs. Int J Comput Assist Radiol Surg. 2013;8:877–85.

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Muramatsu C, Horiba K, Hayashi T, Fukui T, Hara T, Katsumata A, et al. Quantitative assessment of mandibular cortical erosion on dental panoramic radiographs for screening osteoporosis. Int J Comput Assist Radiol Surg. 2016;11:2021–32.

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Maia PRL, Medeiros AMC, Pereira HSG, Lima KC, Oliveira PT. Presence and associated factors of carotid artery calcification detected by digital panoramic radiography in patients with chronic kidney disease undergoing hemodialysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126:198–204.

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 8.

    Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. J Dent. 2018;77:106–11.

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2018. https://doi.org/10.1007/s11282-018-0363-7[Epub ahead of print].

    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, et al. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48:20180218.

    PubMed 
    Article 

    Google Scholar
     

  • 11.

    Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019. https://doi.org/10.1016/j.oooo.2019.05.014[Epub ahead of print].

    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study. Dentomaxillofac Radiol. 2018;48:20170344.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Ekert T, Krois J, Meinhold L, Elhennawy K, Emara R, Golla T, et al. Deep learning for the radiographic detection of apical lesions. J Endod. 2019;45(7):917–922.e5.

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9(1):9007.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 16.

    Krois J, Ekert T, Meinhold L, Golla T, Kharbot B, Wittemeier A, et al. Deep learning for the radiographic detection of periodontal bone loss. Sci Rep. 2019;9(1):8495.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, et al. Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofac Radiol. 2019. https://doi.org/10.1259/dmfr.20190019[Epub ahead of print].

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Zhao ZQ, Zheng P, Xu ST, Wu X. Object detection with deep learning: a review. IEEE Trans Neural Netw Learn Syst. 2019. https://doi.org/10.1109/TNNLS.2018.2876865.

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al. Large scale deep learning for computer aided detection of mammographic lesions. Med Image Anal. 2017;35:303–12.

    PubMed 
    Article 

    Google Scholar
     

  • 20.

    Ardakani FE, Razavi SH, Tabrizizadeh M. Diagnostic value of cone-beam computed tomography and periapical radiography in detection of vertical root fracture. Iran Endod J. 2015;10:122–6.


    Google Scholar
     

  • 21.

    Safi Y, Aghdasi MM, Ezoddini-Ardakani F, Beiraghi S, Vasegh Z. Effect of metal artifacts on detection of vertical root fractures using two cone beam computed tomography systems. Iran Endod J. 2015;10:193–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Hekmatian E, Karbasi Kheir M, Fathollahzade H, Sheikhi M. Detection of vertical root fractures using cone-beam computed tomography in the presence and absence of gutta-percha. Sci World J. 2018;109:1920946.


    Google Scholar
     

  • 23.

    Llena-Puy MC, Forner-Navarro L, Barbero-Navarro I. Vertical root fracture in endodontically treated teeth: a review of 25 cases. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2001;92:553–5.

    PubMed 
    Article 

    Google Scholar
     

  • 24.

    Prithviraj DR, Bhalla HK, Vashisht R, Regish KM, Suresh P. An overview of management of root fractures. Kathmandu Univ Med J. 2014;12:222–30.

    Article 

    Google Scholar
     

  • 25.

    Tsesis I, Rosen E, Tamse A, Taschieri S, Kfir A. Diagnosis of vertical root fractures in endodontically treated teeth based on clinical and radiographic indices: a systematic review. J Endod. 2010;36:1455–8.

    PubMed 
    Article 

    Google Scholar
     

  • 26.

    Salineiro FCS, Kobayashi-Velasco S, Braga MM, Cavalcanti MGP. Radiographic diagnosis of root fractures: a systematic review, meta-analyses and sources of heterogeneity. Dentomaxillofac Radiol. 2017;46:20170400.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Ma RH, Ge ZP, Li G. Detection accuracy of root fractures in cone-beam computed tomography images: a systematic review and meta-analysis. Int Endod J. 2016;49:646–54.

    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Long H, Zhou Y, Ye N, Liao L, Jian F, Wang Y, et al. Diagnostic accuracy of CBCT for tooth fractures: a meta-analysis. J Dent. 2014;42:240–8.

    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Brady E, Mannocci F, Brown J, Wilson R, Patel S. A comparison of cone beam computed tomography and periapical radiography for the detection of vertical root fractures in nonendodontically treated teeth. Int Endod J. 2014;47:735–46.

    PubMed 
    Article 

    Google Scholar
     

  • 30.

    Junqueira RB, Verner FS, Campos CN, Devito KL, do Carmo AM. Detection of vertical root fractures in the presence of intracanal metallic post: a comparison between periapical radiography and cone-beam computed tomography. J Endod. 2013;39:1620–4.

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Kobayashi-Velasco S, Salineiro FC, Gialain IO, Cavalcanti MG. Diagnosis of alveolar and root fractures: an in vitro study comparing CBCT imaging with periapical radiographs. J Appl Oral Sci. 2017;25:227–33.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Takeshita WM, Chicarelli M, Iwaki LC. Comparison of diagnostic accuracy of root perforation, external resorption and fractures using cone-beam computed tomography, panoramic radiography and conventional and digital periapical radiography. Indian J Dent Res. 2015;26:619–26.

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Xue Y, Zhang R, Deng Y, Chen K, Jiang T. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS ONE. 2017;12:e0178992.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 34.

    Wang H, Zhou Z, Li Y, Chen Z, Lu P, Wang W, et al. Comparison of machine learning methods for classifying mediastinal lymph node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images. EJNMMI Res. 2017;7:11.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Özdemir B, Aksoy D, Eckert D, Pesaresi M, Ehrlich D. Performance measures for object detection evaluation. Pattern Recognit Lett. 2010;31:1128–37.

    Article 

    Google Scholar
     

  • 36.

    England JR, Cheng PM. Artificial intelligence for medical image analysis: a guide for authors and reviewers. AJR Am J Roentgenol. 2019;212(3):513–9.

    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Powers DMW. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J Mach Learning Technol. 2011;2:37–633.


    Google Scholar
     

  • 38.

    Yap MH, Pons G, Marti J, Ganau S, Sentis M, Zwiggelaar R, et al. Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J Biomed Health Inform. 2018;22(4):1218–26.

    PubMed 
    Article 

    Google Scholar
     

  • 39.

    Garg N, Garg A. Textbook of endodontics. 4th ed. New Delhi: Jaypee Brothers Medical Publishers; 2019.


    Google Scholar
     

  • 40.

    Popescu SM, Diaconu OA, Scrieciu M, Marinescu IR, Drăghici EC, Truşcă AG, et al. Root fractures: epidemiological, clinical and radiographic aspects. Rom J Morphol Embryol. 2017;58:501–6.

    PubMed 

    Google Scholar
     

  • 41.

    Suksaphar W, Banomyong D, Jirathanyanatt T, Ngoenwiwatkul Y. Survival rates from fracture of endodontically treated premolars restored with full-coverage crowns or direct resin composite restorations: a retrospective study. J Endod. 2018;44:233–8.

    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Walton RE. Vertical root fracture: factors related to identification. J Am Dent Assoc. 2017;148:100–5.

    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Tamse A, Fuss Z, Lustig J, Ganor Y, Kaffe I. Radiographic features of vertically fractured, endodontically treated maxillary premolars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;88:348–52.

    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Lustig JP, Tamse A, Fuss Z. Pattern of bone resorption in vertically fractured, endodontically treated teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90:224–7.

    PubMed 
    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Comment