Home Dental Radiology Evaluation of histogram equalization and contrast limited adaptive histogram equalization effect on image quality and fractal dimensions of digital periapical radiographs

Evaluation of histogram equalization and contrast limited adaptive histogram equalization effect on image quality and fractal dimensions of digital periapical radiographs

by adminjay


  • Karuntanović T, et al. In vitro comparison of the accuracy of two apex locators of different generations. Acta Medica Medianae. 2019;58(1):28–32.

    Article 

    Google Scholar
     

  • Arslan ZB, et al. Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard. Dentomaxillofac Radiol. 2020;49(6):20190290.

    Article 

    Google Scholar
     

  • Katayama R. Series: practical evaluation of clinical image quality (1): image quality verification of digital radiography. Igaku Butsuri. 2016;35(4):307–13.

    PubMed 

    Google Scholar
     

  • Çalışkan A, Sumer AP. Definition, classification and retrospective analysis of photostimulable phosphor image artefacts and errors in intraoral dental radiography. Dentomaxillofac Radiol. 2017;46(3):20160188.

    Article 

    Google Scholar
     

  • Raghav N, et al. Comparison of the efficacy of conventional radiography, digital radiography, and ultrasound in diagnosing periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110(3):379–85.

    Article 

    Google Scholar
     

  • Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794–807.

    Article 

    Google Scholar
     

  • Lo WY, Puchalski SM. Digital image processing. Vet Radiol Ultrasound. 2008;49(1 Suppl 1):S42–7.

    Article 

    Google Scholar
     

  • Alkhaled F, Hasan A, Alhammad A. Improving radiographic image contrast using multi layers of histogram equalization technique. IAES Int J Artif Intell. 2021;10:151–6.


    Google Scholar
     

  • White SC, Pharoah MJ. Oral radiology: principles and interpretation. St. Louis: Mosby Inc.; 2019.


    Google Scholar
     

  • Subramani B, Veluchamy M. Fuzzy gray level difference histogram equalization for medical image enhancement. J Med Syst. 2020;44(6):103.

    Article 

    Google Scholar
     

  • Kumar A, Bhadauria HS, Singh A. Descriptive analysis of dental X-ray images using various practical methods: a review. PeerJ Comput Sci. 2021;7: e620.

    Article 

    Google Scholar
     

  • Zimmerman JB, et al. A psychophysical comparison of two methods for adaptive histogram equalization. J Digit Imaging. 1989;2(2):82–91.

    Article 

    Google Scholar
     

  • Leszczynski KW, Shalev S, Cosby NS. The enhancement of radiotherapy verification images by an automated edge detection technique. Med Phys. 1992;19(3):611–21.

    Article 

    Google Scholar
     

  • Pretty IA. Caries detection and diagnosis: novel technologies. J Dent. 2006;34(10):727–39.

    Article 

    Google Scholar
     

  • Pizer SM, et al. Adaptive histogram equalization and its variations. Comput Vis Graph Image Process. 1987;39(3):355–68.

    Article 

    Google Scholar
     

  • Singh P, Mukundan R, De Ryke R. Feature enhancement in medical ultrasound videos using contrast-limited adaptive histogram equalization. J Digit Imaging. 2020;33(1):273–85.

    Article 

    Google Scholar
     

  • Niroomandfam B, NickravanShalmani A, Khalilian M. Breast abnormalities segmentation using the wavelet transform coefficients aggregation. Iran Quart J Breast Dis. 2019;12(2):57–71.

    Article 

    Google Scholar
     

  • Kalyani J, Chakraborty M. Contrast enhancement of MRI images using histogram equalization techniques. in 2020 International Conference on Computer, Electrical & Communication Engineering (ICCECE); 2020.

  • Albeiruti H, AwheedJeiad H. OPG images preprocessing enhancement for diagnosis purposes. Int J Sci Res. 2018;7:1656–64.


    Google Scholar
     

  • Leonardi Dutra K, et al. Diagnostic accuracy of cone-beam computed tomography and conventional radiography on apical periodontitis: a systematic review and meta-analysis. J Endod. 2016;42(3):356–64.

    Article 

    Google Scholar
     

  • Palatyńska-Ulatowska A, et al. The pulp stones: morphological analysis in scanning electron microscopy and spectroscopic chemical quantification. Medicina (Kaunas). 2021;58(1):5.

    Article 

    Google Scholar
     

  • Alwazzan MJ, Ismael MA, Ahmed AN. A hybrid algorithm to enhance colour retinal fundus images using a wiener filter and CLAHE. J Digit Imaging. 2021;34(3):750–9.

    Article 

    Google Scholar
     

  • Qassim HM, Basheer NM, Farhan MN. Brightness preserving enhancement for dental digital X-ray images based on entropy and histogram analysis. J Appl Sci Eng. 2019;22(1):187–94.


    Google Scholar
     

  • ElSayed A, Yousef WA, Matlab vs. OpenCV: a comparative study of different machine learning algorithms. ArXiv, 2019. abs/1905.01213.

  • Soltani P, et al. Application of fractal analysis in detecting trabecular bone changes in periapical radiograph of patients with periodontitis. Int J Dent. 2021;2021:3221448.

    Article 

    Google Scholar
     

  • Coşgunarslan A, et al. The evaluation of the mandibular bone structure changes related to lactation with fractal analysis. Oral Radiol. 2020;36(3):238–47.

    Article 

    Google Scholar
     

  • Meier AW, et al. Interpretation of chemically created periapical lesions using direct digital imaging. J Endod. 1996;22(10):516–20.

    Article 

    Google Scholar
     

  • Rahmi-Fajrin H, et al. Dental radiography image enhancement for treatment evaluation through digital image processing. J Clin Exp Dent. 2018;10(7):e629–34.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehdizadeh M, Dolatyar S. Study of effect of adaptive histogram equalization on image quality in digital preapical image in pre apex area. Res J Biol Sci. 2009;4(8):922–4.


    Google Scholar
     



  • Source link

    Related Articles