Home Dental Radiology Fundamental study on chaotic transition of two-phase flow regime and free surface instability in gas deaeration process

Fundamental study on chaotic transition of two-phase flow regime and free surface instability in gas deaeration process

by adminjay


  • Balasubramaniam, R., Ramé, E., Kizito, J., Kassemi, M. 2014. Two phase flow modeling: Summary of flow regimes and pressure drop correlations in reduced and partial gravity. National Center for Space Exploration Research, Cleveland, Ohio, USA.


    Google Scholar
     

  • Bellman, R., Pennington, R. H. 1954. Effects of surface tension and viscosity on Taylor instability. Q Appl Math, 12: 151–162.

    MathSciNet 
    MATH 

    Google Scholar
     

  • CD-adapco Group (CDA). 2018. STAR-CCM+ Users Guide, Release 13.06.013. Melville, New York, USA.

  • Chandrasekhar, S. 1961. Hydrodynamic and Hydromagnetic Stability. Oxford University Press.

  • Chou, Y., Shao, Y. 2016. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment. Phys Fluids, 28: 043302.


    Google Scholar
     

  • Contopoulos, I., Kazanas, D., Papadopoulos, D. B. 2016. The magnetic Rayleigh-Taylor instability in astrophysical discs. Mon Not R Astron Soc, 462: 565–575.


    Google Scholar
     

  • Duff, R. E., Harlow, F. H., Hirt, C. W. 1962. Effects of diffusion on interface instability between gases. Phys Fluids, 5: 417–425.

    MATH 

    Google Scholar
     

  • Gorash, Y., Bickley, A., Gozalo, F. 2018. Application of the CEL approach to consider FSI for the assessment of leak tightness for elastomeric seals. In: Proceedings of the ASME 2018 Pressure Vessels and Piping Conference. Volume 4: Fluid-Structure Interaction, PVP2018-84792.

  • Guo, H. Y., Wang, L. F., Ye, W. H., Wu, J. F., Zhang, W. Y. 2017. Weakly nonlinear Rayleigh-Taylor instability in incompressible fluids with surface tension. Chinese Phys Lett, 34: 045201.


    Google Scholar
     

  • Hibiki, T., Ishii, M. 2001. Interfacial area concentration in steady fully-developed bubbly flow. Int J Heat Mass Tran, 44: 3443–3461.

    MATH 

    Google Scholar
     

  • Hibiki, T., Ishii, M. 2002. Interfacial area concentration of bubbly flow systems. Chem Eng Sci, 57: 3967–3977.

    Article 

    Google Scholar
     

  • Hu, Z. X., Zhang, Y. S., Tian, B., He, Z., Li, L. 2019. Effect of viscosity on two-dimensional single-mode Rayleigh-Taylor instability during and after the reacceleration stage. Phys Fluids, 31: 104108.

    Article 

    Google Scholar
     

  • Ingvast, H., Norberg, A. 2012. Unit for accumulating and degassing oil. United States Patent, US 8,118,921 B2.

  • Joggerst, C. C., Almgren, A., Woosley, S. E. 2010. Three-dimensional simulations of Rayleigh-Taylor mixing in core-collapse supernovae. Astrophys J Lett, 723: 353–363.

    Article 

    Google Scholar
     

  • Kawaguchi, M., Niga, S., Gou, N., Miyake, K. 2006. Buoyancy-driven path instabilities of bubble rising in simple and polymer solutions of hele-shaw cell. J Phys Soc Jpn, 75: 124401.

    Article 

    Google Scholar
     

  • Kirkpatrick, R. D., Lockett, M. J. 1974. The influence of approach velocity on bubble coalescence. Chem Eng Sci, 29: 2363–2373.

    Article 

    Google Scholar
     

  • Kocamustafaogullari, G., Ishii, M. 1995. Foundation of the interfacial area transport equation and its closure relations. Int J Heat Mass Tran, 38: 481–493.

    Article 

    Google Scholar
     

  • Le Creurer, B., Gauthier, S. 2008. A return toward equilibrium in a 2D Rayleigh-Taylor instability for compressible fluids with a multidomain adaptive Chebyshev method. Theor Comp Fluid Dyn, 22: 125–144.

    Article 

    Google Scholar
     

  • Lewis, D. J. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. P Roy Soc A: Math Phy, 202: 81–96.


    Google Scholar
     

  • Li, S. M., Zhang, A. M., Wang, Q. X., Zhang, S. 2019. The jet characteristics of bubbles near mixed boundaries. Phys Fluids, 31: 107105.


    Google Scholar
     

  • Loisy, A., Naso, A., Spelt, P. D. M. 2017. Buoyancy-driven bubbly flows: Ordered and free rise at small and intermediate volume fraction. J Fluid Mech, 816: 94–141.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Magolan, B., Baglietto, E. 2019. Assembling a bubble-induced turbulence model incorporating physcial understanding from DNS. Int J Multiphase Flow, 116: 185–202.

    MathSciNet 

    Google Scholar
     

  • Magolan, B., Lubchenko, N., Baglietto, E. 2019. A quantitative and generalized assessment of bubble-induced turbulence models for gas-liquid systems. Chem Eng Sci: X, 2: 100009.


    Google Scholar
     

  • Morgan, R. V., Likhachev, O. A., Jacobs, J. W. 2016. Rarefaction-driven Rayleigh-Taylor instability. Part 1. Diffuse-interface linear stability measurements and theory. J Fluid Mech, 791: 34–60.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Oakley, J. 2004. Rayleigh-Taylor instability notes. Available at http://silver.neep.wisc.edu/~shock/rtnotes.pdf.

  • Oolman, T. O., Blanch, H. W. 1986. Bubble coalescence in stagnant liquids. Chem Eng Commun, 43: 237–261.


    Google Scholar
     

  • Plesset, M. S. 1974. Viscous effects in Rayleigh-Taylor instability. Phys Fluids, 17: 1.

    MATH 

    Google Scholar
     

  • Plesset, M. S., Hsieh, D. Y. 1964. General analysis of the stability of superposed fluids. Phys Fluids, 7: 1099–1108.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Prince, M. J., Blanch, H. W. 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J, 36: 1485–1499.


    Google Scholar
     

  • Ramaprabhu, P., Dimonte, G., Woodward, P., Fryer, C., Rockefeller, G., Muthuraman, K., Lin, P. H., Jayaraj, J. 2012. The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys Fluids, 24: 074107.


    Google Scholar
     

  • Rayleigh, L. 1883. Analytic solutions of the Rayleigh equation for linear density profiles. Proc London Math Soc, 14: 170–177.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Regan, S. P., Epstein, R., Hammel, B. A., Suter, L. J., Ralph, J., Scott, H., Barrios, M. A., Bradley, D. K., Callahan, D. A., Cerjan, C. et al. 2012. Hot-spot mix in ignition-scale implosions on the NIF. Phys Plasmas, 19: 056307.


    Google Scholar
     

  • Roache, P. J. 1997. Quantification of uncertainty in computational fluid dynamics. Annu Rev Fluid Mech, 29: 123–160.

    MathSciNet 
    Article 

    Google Scholar
     

  • Sanderson, R. M., Davison, J. L. 2004. Hydraulic pump reservoir having deaeration diffuser. United States Patent, US 6,783,334 B2.

  • Shelke, N., Bade, A., Mukhopadhyay, S. 2019. Fluid-structure interaction-based simulation methods for fluid sloshing in tanks. SAE Technical Paper, 2019-01-5091.

  • Smalyuk, V. A. 2012. Experimental techniques for measuring Rayleigh-Taylor instability in inertial confinement fusion. Physica Scripta, 86: 058204.

    Article 

    Google Scholar
     

  • Taylor, G. I. 1950. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. P Roy Soc A: Math Phy, 201: 192–196.

    MathSciNet 
    MATH 

    Google Scholar
     

  • Tejashwar Reddy, V. 2017. CFD analysis of sloshing within a tank with porous baffles. Int J Sci Res, 6: 172–177.


    Google Scholar
     

  • Terrones, G., Carrara, M. D. 2015. Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface. Phys Fluids, 27: 054105.

    Article 

    Google Scholar
     

  • Tic, V., Lovrec, D. 2012. Design of modern hydraulic tank using fluid flow simulation. Int J Simul Model, 11: 77–88.


    Google Scholar
     

  • Vijay Kumar, K., Kantha Rao, K. 2017. Exploration of air flow inside oil tanks by using CFD. Int J Adv Infor Sci Tech, 6: 70–77.


    Google Scholar
     

  • Wei, T., Livescu, D. 2012. Late-time quadratic growth in single-mode Rayleigh-Taylor instability. Phys Rev E, 86: 046405.


    Google Scholar
     

  • Wolf, G. G. H. 2018. Dynamic stabilization of the Rayleigh-Taylor instability of miscible liquids and the related “frozen waves”. Phys Fluids, 30: 021701.


    Google Scholar
     

  • Yamanaka, C. 1999. Inertial confinement fusion: The quest for ignition and energy gain using indirect drive. Nucl Fusion, 39: 825–827.


    Google Scholar
     

  • Zahedi, P., Saleh, R., Moreno-Atanasio, R., Yousefi, K. 2014. Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method. Korean J Chem Eng, 31: 1349–1361.


    Google Scholar
     

  • Zhou, Y., Cabot, W. H. 2019. Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios. Physics Fluids, 31: 084106.


    Google Scholar
     

  • Ziegenhein, T. 2016. Fluid dynamics of bubbly flows. Ph.D. Thesis. Process Sciences of the Technical University, Berlin.



  • Source link

    Related Articles