Home Dental Radiology LRVRG: a local region-based variational region growing algorithm for fast mandible segmentation from CBCT images

LRVRG: a local region-based variational region growing algorithm for fast mandible segmentation from CBCT images

by adminjay


  • 1.

    Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol. 1998;8(9):1558–64.

    Article 

    Google Scholar
     

  • 2.

    Spampinato C, Pino C, Giordano D, et al. Automatic 3D segmentation of mandible for assessment of facial asymmetry[C]. IEEE International Symposium on Medical Measurements and Applications Proceedings. IEEE. 2012;2012:1–4.


    Google Scholar
     

  • 3.

    Gollmer S T, Buzug T M. Fully automatic shape constrained mandible segmentation from cone-beam CT data[C]//2012 9th IEEE international symposium on biomedical imaging (ISBI). IEEE, 2012;1272–1275.

  • 4.

    Pohle R, Toennies K D. Segmentation of medical images using adaptive region growing[C]//Medical Imaging 2001: Image Processing. International Society for Optics and Photonics, 2001;4322:1337–1346.

  • 5.

    Yan M, Guo J, Tian W, et al. Symmetric convolutional neural network for mandible segmentation. Knowledge-Based Systems. 2018;159:63–71.

    Article 

    Google Scholar
     

  • 6.

    Shen D, Ip HHS. A Hopfield neural network for adaptive image segmentation: An active surface paradigm. Pattern Recognition Letters. 1997;18(1):37–48.

    Article 

    Google Scholar
     

  • 7.

    Zhan Y, Shen D. Automated segmentation of 3D US prostate images using statistical texture-based matching method[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2003;688–696.

  • 8.

    Loubele M, Bogaerts R, Van Dijck E, et al. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications[J]. Eur J Radiol. 2009;71(3):461–8.

    Article 

    Google Scholar
     

  • 9.

    Barandiaran I, Macía I, Berckmann E, et al. An automatic segmentation and reconstruction of mandibular structures from CT-data[C]//International Conference on Intelligent Data Engineering and Automated Learning. Springer, Berlin, Heidelberg, 2009;649–655.

  • 10.

    Lu S, Yu X, Gai-Xian S, et al. Study of outer contour extraction based on mandible CBCT image[J]. Laser J. 2013;34(6):101–2.


    Google Scholar
     

  • 11.

    Tan PY, Chen JH, Li P, Guo JX, Tang W, Long J, Liu L, Tian WD. Improving Threshold Segmentation in 3D Reconstruction of Mandible CT Image[J]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2015;46(3):458–62.

    PubMed 

    Google Scholar
     

  • 12.

    Kainmueller D, Lamecker H, Seim H, et al. Automatic extraction of mandibular nerve and bone from cone-beam CT data[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2009;76–83.

  • 13.

    Wang L, Chen KC, Gao Y, et al. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization[J]. Med Phys. 2014;41(4):043503.

    Article 

    Google Scholar
     

  • 14.

    Brandariz M, Barreira N, Penedo M G, et al. Automatic segmentation of the mandible in cone-beam computer tomography images[C]//2014 IEEE 27th International Symposium on Computer-Based Medical Systems. IEEE, 2014;467–468.

  • 15.

    Linares OC, Bianchi J, Raveli D, et al. Mandible and skull segmentation in cone beam computed tomography using super-voxels and graph clustering[J]. The Visual Computer. 2019;35(10):1461–74.

    Article 

    Google Scholar
     

  • 16.

    Jean-Loic R, Chantal R M, Christophe O, et al. Variational region growing[C]//International Conference on Computer Vision Theory and Applications. SCITEPRESS, 2009;1:166–171.

  • 17.

    Lorensen WE, Cline HE. Marching cubes: A high resolution 3D surface construction algorithm. ACM siggraph computer graphics. 1987;21(4):163–9.

    Article 

    Google Scholar
     

  • 18.

    Heimann T, Ginneken BV, Styner MA, et al. Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets[J]. IEEE Trans Med Imaging. 2009;28(8):1251–65.

    Article 

    Google Scholar
     

  • 19.

    Li CM, Xu CY, Gui CF, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Trans Image Process. 2010;19(12):3243–54.

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Comment