Home Orthodontics Mandibular prognathism attenuates brain blood flow induced by chewing

Mandibular prognathism attenuates brain blood flow induced by chewing

by adminjay

  • 1.

    Peck, C. C. Biomechanics of occlusion–implications for oral rehabilitation. Journal of oral rehabilitation 43, 205–214, https://doi.org/10.1111/joor.12345 (2016).

  • 2.

    Lund, J. P. Chapter 15–chew before you swallow. Progress in brain research 188, 219–228, https://doi.org/10.1016/b978-0-444-53825-3.00020-6 (2011).

  • 3.

    Avivi-Arber, L., Martin, R., Lee, J. C. & Sessle, B. J. Face sensorimotor cortex and its neuroplasticity related to orofacial sensorimotor functions. Archives of oral biology 56, 1440–1465, https://doi.org/10.1016/j.archoralbio.2011.04.005 (2011).

  • 4.

    Turker, K. S. Reflex control of human jaw muscles. Critical reviews in oral biology and medicine: an official publication of the American Association of Oral Biologists 13, 85–104 (2002).

  • 5.

    Yamazaki, K., Wakabayashi, N., Kobayashi, T. & Suzuki, T. Effect of tooth loss on spatial memory and trkB-mRNA levels in rats. Hippocampus 18, 542–547, https://doi.org/10.1002/hipo.20440 (2008).

  • 6.

    Tsutsui, K. et al. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning ability in mice. Biomedical research (Tokyo, Japan) 28, 1–7 (2007).

  • 7.

    Ono, Y., Yamamoto, T., Kubo, K. Y. & Onozuka, M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. Journal of oral rehabilitation 37, 624–640, https://doi.org/10.1111/j.1365-2842.2010.02079.x (2010).

  • 8.

    Kubo, K. Y. et al. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neuroscience letters 414, 188–191, https://doi.org/10.1016/j.neulet.2006.12.020 (2007).

  • 9.

    Tomida, M. & Esaki, Y. The improvement of frontal lobe function by repaired occlusion. Ronen Shika Igaku 18, 199–204, https://doi.org/10.11259/jsg1987.18.199 (2003).

  • 10.

    Furuta, M. et al. Interrelationship of oral health status, swallowing function, nutritional status, and cognitive ability with activities of daily living in Japanese elderly people receiving home care services due to physical disabilities. Community dentistry and oral epidemiology 41, 173–181, https://doi.org/10.1111/cdoe.12000 (2013).

  • 11.

    Momose, T. et al. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with (1)(5)O-labelled water and magnetic resonance imaging. Archives of oral biology 42, 57–61 (1997).

  • 12.

    Toyoda, Y. & Mushimoto, E. Location of Electric Current Sources with Activation of Experimental Occlusal Interference in the Human Brain by Dipole Tracing Method. Nihon Hotetsu Shika Gakkai Zasshi 48, 183–192, https://doi.org/10.2186/jjps.48.183 (2004).

  • 13.

    Athanasiou, A. E. Morphologic and functional implications of the surgical-orthodontic management of mandibular prognathism: a comprehensive review. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 103, 439–447, https://doi.org/10.1016/s0889-5406(05)81794-9 (1993).

  • 14.

    Athanasiou, A. E., Melsen, B., Mavreas, D. & Kimmel, F. P. Stomatognathic function of patients who seek orthognathic surgery to correct dentofacial deformities. The International journal of adult orthodontics and orthognathic surgery 4, 239–254 (1989).

  • 15.

    Ingervall, B., Ridell, A. & Thilander, B. Changes in activity of the temporal, masseter and lip muscles after surgical correction of mandibular prognathism. International journal of oral surgery 8, 290–300 (1979).

  • 16.

    Kurashima, S. & Fukui, T. Comparison of perioral muscle activities during chewing and swallowing between normals and subjects with open bite. Orthodontic waves: journal of the Japanese Orthodontic Society 59, 352–363 (2000).

  • 17.

    Kong, J. et al. The neural substrate of arithmetic operations and procedure complexity. Brain research. Cognitive brain research 22, 397–405, https://doi.org/10.1016/j.cogbrainres.2004.09.011 (2005).

  • 18.

    Maillet, D. & Rajah, M. N. Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: a review. Ageing research reviews 12, 479–489, https://doi.org/10.1016/j.arr.2012.11.001 (2013).

  • 19.

    Nyberg, L. Cognitive control in the prefrontal cortex: A central or distributed executive? Scandinavian journal of psychology 59, 62–65, https://doi.org/10.1111/sjop.12409 (2018).

  • 20.

    Hoshi, Y. & Tamura, M. Dynamic multichannel near-infrared optical imaging of human brain activity. Journal of applied physiology (Bethesda, Md.: 1985) 75, 1842–1846 (1993).

  • 21.

    Takada, T. & Miyamoto, T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neuroscience letters 360, 137–140, https://doi.org/10.1016/j.neulet.2004.02.052 (2004).

  • 22.

    Narita, N., Kamiya, K., Kawasaki, S. & Matsumoto, T. Prefrontal Cortex Activity related to Chewing Gum. The Journal of Japanese Society of Stomatognathic Function 15, 154–155, https://doi.org/10.7144/sgf.15.154 (2009).

  • 23.

    Plichta, M. M. et al. Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable? NeuroImage 31, 116–124, https://doi.org/10.1016/j.neuroimage.2005.12.008 (2006).

  • 24.

    Miyazaki, H. et al. A study of model and cephalograms in elderly persons over 80 years old with at least 20 teeth. Orthodontic waves: journal of the Japanese Orthodontic Society: 60, 118–125 (2001).

  • 25.

    Nishimura, K. et al. Associations between Possession of ≥20 Teeth and Mild Cognitive Impairment in a Community-Dwelling Elderly Japanese Population: A 1-Year Prospective Cohort Study. Annals of Japan Prosthodontic Society 3, 126–134 (2011).

  • 26.

    Noda, T. et al. Frontal and right temporal activations correlate negatively with depression severity during verbal fluency task: a multi-channel near-infrared spectroscopy study. J Psychiatr Res 46, 905–912, https://doi.org/10.1016/j.jpsychires.2012.04.001 (2012).

  • 27.

    Ma, X. Y. et al. Near-Infrared Spectroscopy Reveals Abnormal Hemodynamics in the Left Dorsolateral Prefrontal Cortex of Menopausal Depression Patients. Disease markers 2017, 1695930, https://doi.org/10.1155/2017/1695930 (2017).

  • 28.

    Ownby, R. L., Crocco, E., Acevedo, A., John, V. & Loewenstein, D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 63, 530–538, https://doi.org/10.1001/archpsyc.63.5.530 (2006).

  • 29.

    Nelson, A. R., Sweeney, M. D., Sagare, A. P. & Zlokovic, B. V. Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochimica et biophysica acta 1862, 887–900, https://doi.org/10.1016/j.bbadis.2015.12.016 (2016).

  • 30.

    Chujo, M., Sugawara, J., Tomoyose, Y., Kawamura, H. & Mitani, H. Effects of Functional Training with Chewing Gum after Surgical Orthodontic Treatment on Masticatory System in Jaw Deformity Patients. The Japanese Journal of Jaw Deformities 14, 170–179, https://doi.org/10.5927/jjjd1991.14.170 (2004).

  • 31.

    Shimazaki, Y. et al. Influence of dentition status on physical disability, mental impairment, and mortality in institutionalized elderly people. Journal of dental research 80, 340–345, https://doi.org/10.1177/00220345010800010801 (2001).

  • 32.

    Miura, H., Yamasaki, K., Kariyasu, M., Miura, K. & Sumi, Y. Relationship between cognitive function and mastication in elderly females. Journal of oral rehabilitation 30, 808–811 (2003).

  • 33.

    Stein, P. S., Desrosiers, M., Donegan, S. J., Yepes, J. F. & Kryscio, R. J. Tooth loss, dementia and neuropathology in the Nun study. Journal of the American Dental Association (1939) 138, 1314–1322; quiz 1381–1312 (2007).

  • 34.

    Narita, N. Mastication and Prefrontal Cortex. Journal of Japanese Society for Mastication Science and Health Promotion 18, 12–21, https://doi.org/10.14858/soshaku1991.18.12 (2008).

  • 35.

    Yamamoto, T. et al. Association between self-reported dental health status and onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosomatic medicine 74, 241–248, https://doi.org/10.1097/PSY.0b013e318246dffb (2012).

  • 36.

    Aida, J. et al. Income inequality, social capital and self-rated health and dental status in older Japanese. Social science & medicine (1982) 73, 1561–1568, https://doi.org/10.1016/j.socscimed.2011.09.005 (2011).

  • 37.

    Teixeira, F. B. et al. Masticatory deficiency as a risk factor for cognitive dysfunction. International journal of medical sciences 11, 209–214, https://doi.org/10.7150/ijms.6801 (2014).

  • 38.

    Hasegawa, Y., Ono, T., Hori, K. & Nokubi, T. Influence of Human Jaw Movement on Cerebral Blood Flow. 86, 64–68, https://doi.org/10.1177/154405910708600110 (2007).

  • 39.

    Faul, F., Erdfelder, E., Buchner, A. & Lang, A. G. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 41, 1149–1160, https://doi.org/10.3758/brm.41.4.1149 (2009).

  • 40.

    Okamoto, M. et al. Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage 21, 99–111 (2004).

  • 41.

    Zhang, H. et al. Test-retest assessment of independent component analysis-derived resting-state functional connectivity based on functional near-infrared spectroscopy. NeuroImage 55, 607–615, https://doi.org/10.1016/j.neuroimage.2010.12.007 (2011).

  • 42.

    Schecklmann, M., Ehlis, A. C., Plichta, M. M. & Fallgatter, A. J. Functional near-infrared spectroscopy: a long-term reliable tool for measuring brain activity during verbal fluency. NeuroImage 43, 147–155, https://doi.org/10.1016/j.neuroimage.2008.06.032 (2008).

  • 43.

    Suto, T., Fukuda, M., Ito, M., Uehara, T. & Mikuni, M. Multichannel near-infrared spectroscopy in depression and schizophrenia: cognitive brain activation study. Biological Psychiatry 55, 501–511, https://doi.org/10.1016/j.biopsych.2003.09.008 (2004).

  • 44.

    Hoshi, Y., Kobayashi, N. & Tamura, M. Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. Journal of applied physiology (Bethesda, Md.: 1985) 90, 1657–1662 (2001).

  • 45.

    Cooper, R. J. et al. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front Neurosci 6, 147, https://doi.org/10.3389/fnins.2012.00147 (2012).

  • 46.

    Hatakenaka, M., Miyai, I., Mihara, M., Sakoda, S. & Kubota, K. Frontal regions involved in learning of motor skill–A functional NIRS study. NeuroImage 34, 109–116, https://doi.org/10.1016/j.neuroimage.2006.08.014 (2007).

  • Source link

    Related Articles