Home Orthodontics Mechanically-induced GDF15 Secretion by Periodontal Ligament Fibroblasts Regulates Osteogenic Transcription

Mechanically-induced GDF15 Secretion by Periodontal Ligament Fibroblasts Regulates Osteogenic Transcription

by adminjay

  • 1.

    Bodic, F., Hamel, L., Lerouxel, E., Basle, M. F. & Chappard, D. Bone loss and teeth. Joint, bone, spine: revue du rhumatisme 72, 215–221, https://doi.org/10.1016/j.jbspin.2004.03.007 (2005).

  • 2.

    Kawata, T., Yoda, N., Kawaguchi, T., Kuriyagawa, T. & Sasaki, K. Behaviours of three-dimensional compressive and tensile forces exerted on a tooth during function. Journal of oral rehabilitation 34, 259–266, https://doi.org/10.1111/j.1365-2842.2007.01681.x (2007).

  • 3.

    Viecilli, R. F., Katona, T. R., Chen, J., Hartsfield, J. K. Jr. & Roberts, W. E. Three-dimensional mechanical environment of orthodontic tooth movement and root resorption. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 133, 791 e711–726, https://doi.org/10.1016/j.ajodo.2007.11.023 (2008).

  • 4.

    Mabuchi, R., Matsuzaka, K. & Shimono, M. Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. Journal of periodontal research 37, 118–124 (2002).

  • 5.

    Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. European journal of orthodontics 28, 221–240, https://doi.org/10.1093/ejo/cjl001 (2006).

  • 6.

    Krishnan, V. & Davidovitch, Z. Cellular, molecular, and tissue-level reactions to orthodontic force. American journal of orthodontics and dentofacial orthopedics: official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 129, 469 e461–432, https://doi.org/10.1016/j.ajodo.2005.10.007 (2006).

  • 7.

    Zhang, L. et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/beta-catenin pathway. Biochimica et biophysica acta 1860, 2211–2219, https://doi.org/10.1016/j.bbagen.2016.05.003 (2016).

  • 8.

    Garlet, T. P., Coelho, U., Silva, J. S. & Garlet, G. P. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. European journal of oral sciences 115, 355–362, https://doi.org/10.1111/j.1600-0722.2007.00469.x (2007).

  • 9.

    Andrade, I. Jr., Taddei, S. R. A. & Souza, P. E. A. Inflammation and Tooth Movement: The Role of Cytokines, Chemokines, and Growth Factors. Seminars in Orthodontics 18, 257–269, https://doi.org/10.1053/j.sodo.2012.06.004 (2012).

  • 10.

    Basdra, E. K. & Komposch, G. Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. European journal of orthodontics 19, 615–621, https://doi.org/10.1093/ejo/19.6.615 (1997).

  • 11.

    Lekic, P., Rojas, J., Birek, C., Tenenbaum, H. & McCulloch, C. A. Phenotypic comparison of periodontal ligament cells in vivo and in vitro. Journal of periodontal research 36, 71–79 (2001).

  • 12.

    Li, M., Zhang, C. & Yang, Y. Effects of mechanical forces on osteogenesis and osteoclastogenesis in human periodontal ligament fibroblasts: A systematic review of in vitro studies. Bone & joint research 8, 19–31, https://doi.org/10.1302/2046-3758.81.BJR-2018-0060.R1 (2019).

  • 13.

    Sokos, D., Everts, V. & de Vries, T. J. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. Journal of periodontal research 50, 152–159, https://doi.org/10.1111/jre.12197 (2015).

  • 14.

    Marchesan, J. T., Scanlon, C. S., Soehren, S., Matsuo, M. & Kapila, Y. L. Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Archives of oral biology 56, 933–943, https://doi.org/10.1016/j.archoralbio.2011.03.003 (2011).

  • 15.

    Li, I., Jacox, L. A., Little, S. H. & Ko, C. Orthodontic tooth movement: The biology and clinical implications. The Kaohsiung Journal of Medical Sciences 34, 207–214, https://doi.org/10.1016/j.kjms.2018.01.007 (2018).

  • 16.

    Iglesias-Linares, A., Morford, L. A. & Hartsfield, J. K. Jr. Bone Density and Dental External Apical Root Resorption. Current osteoporosis reports 14, 292–309, https://doi.org/10.1007/s11914-016-0340-1 (2016).

  • 17.

    Michelogiannakis, D. et al. Influence of nicotine on orthodontic tooth movement: A systematic review of experimental studies in rats. Archives of oral biology 93, 66–73, https://doi.org/10.1016/j.archoralbio.2018.05.016 (2018).

  • 18.

    Fujita, Y. & Maki, K. High-fat diet-induced obesity triggers alveolar bone loss and spontaneous periodontal disease in growing mice. BMC obesity 3, 1, https://doi.org/10.1186/s40608-016-0082-8 (2015).

  • 19.

    Bootcov, M. R. et al. MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proceedings of the National Academy of Sciences of the United States of America 94, 11514–11519 (1997).

  • 20.

    Breit, S. N. et al. The TGF-beta superfamily cytokine, MIC-1/GDF15: a pleotrophic cytokine with roles in inflammation, cancer and metabolism. Growth factors 29, 187–195, https://doi.org/10.3109/08977194.2011.607137 (2011).

  • 21.

    Chen, G., Deng, C. & Li, Y. P. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. International journal of biological sciences 8, 272–288, https://doi.org/10.7150/ijbs.2929 (2012).

  • 22.

    Wu, M., Chen, G. & Li, Y. P. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone research 4, 16009, https://doi.org/10.1038/boneres.2016.9 (2016).

  • 23.

    Bottner, M., Suter-Crazzolara, C., Schober, A. & Unsicker, K. Expression of a novel member of the TGF-beta superfamily, growth/differentiation factor-15/macrophage-inhibiting cytokine-1 (GDF-15/MIC-1) in adult rat tissues. Cell and tissue research 297, 103–110 (1999).

  • 24.

    Hsiao, E. C. et al. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Molecular and cellular biology 20, 3742–3751 (2000).

  • 25.

    Bauskin, A. R. et al. Role of macrophage inhibitory cytokine-1 in tumorigenesis and diagnosis of cancer. Cancer research 66, 4983–4986, https://doi.org/10.1158/0008-5472.CAN-05-4067 (2006).

  • 26.

    Vanhara, P. et al. Growth/differentiation factor-15 inhibits differentiation into osteoclasts–a novel factor involved in control of osteoclast differentiation. Differentiation; research in biological diversity 78, 213–222, https://doi.org/10.1016/j.diff.2009.07.008 (2009).

  • 27.

    Hinoi, E. et al. Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research 27, 938–949, https://doi.org/10.1002/jbmr.1538 (2012).

  • 28.

    Westhrin, M. et al. Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica 100, e511–514, https://doi.org/10.3324/haematol.2015.124511 (2015).

  • 29.

    Frank, D. et al. Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51, 309–318, https://doi.org/10.1161/HYPERTENSIONAHA.107.098046 (2008).

  • 30.

    De Jong, A. M. et al. Cyclical stretch induces structural changes in atrial myocytes. Journal of cellular and molecular medicine 17, 743–753, https://doi.org/10.1111/jcmm.12064 (2013).

  • 31.

    Muralidharan, A. R., Maddala, R., Skiba, N. P. & Rao, P. V. Growth Differentiation Factor-15-Induced Contractile Activity and Extracellular Matrix Production in Human Trabecular Meshwork. Cells. Investigative ophthalmology & visual science 57, 6482–6495, https://doi.org/10.1167/iovs.16-20671 (2016).

  • 32.

    Rys, J. P., Monteiro, D. A. & Alliston, T. Mechanobiology of TGFbeta signaling in the skeleton. Matrix biology: journal of the International Society for Matrix Biology 52–54, 413–425, https://doi.org/10.1016/j.matbio.2016.02.002 (2016).

  • 33.

    Wang, J. H., Thampatty, B. P., Lin, J. S. & Im, H. J. Mechanoregulation of gene expression in fibroblasts. Gene 391, 1–15, https://doi.org/10.1016/j.gene.2007.01.014 (2007).

  • 34.

    Langevin, H. M. et al. Fibroblast cytoskeletal remodeling induced by tissue stretch involves ATP signaling. Journal of cellular physiology 228, 1922–1926, https://doi.org/10.1002/jcp.24356 (2013).

  • 35.

    Shim, J. W., Wise, D. A. & Elder, S. H. Effect of Cytoskeletal Disruption on Mechanotransduction of Hydrostatic Pressure by C3H10T1/2 Murine Fibroblasts. The open orthopaedics journal 2, 155–162, https://doi.org/10.2174/1874325000802010155 (2008).

  • 36.

    Aw Yong, K. M. et al. Morphological effects on expression of growth differentiation factor 15 (GDF15), a marker of metastasis. Journal of cellular physiology 229, 362–373, https://doi.org/10.1002/jcp.24458 (2014).

  • 37.

    Howard, P. S., Kucich, U., Taliwal, R. & Korostoff, J. M. Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. Journal of periodontal research 33, 500–508 (1998).

  • 38.

    Duarte, W. R. et al. Effects of mechanical stress on the mRNA expression of S100A4 and cytoskeletal components by periodontal ligament cells. Journal of medical and dental sciences 46, 117–122 (1999).

  • 39.

    Li, S. et al. Maturation of growth differentiation factor 15 in human placental trophoblast cells depends on the interaction with Matrix Metalloproteinase-26. The Journal of clinical endocrinology and metabolism 99, E2277–2287, https://doi.org/10.1210/jc.2014-1598 (2014).

  • 40.

    Abd El-Aziz, S. H., Endo, Y., Miyamaori, H., Takino, T. & Sato, H. Cleavage of growth differentiation factor 15 (GDF15) by membrane type 1-matrix metalloproteinase abrogates GDF15-mediated suppression of tumor cell growth. Cancer science 98, 1330–1335, https://doi.org/10.1111/j.1349-7006.2007.00547.x (2007).

  • 41.

    Bildt, M. M., Bloemen, M., Kuijpers-Jagtman, A. M. & Von den Hoff, J. W. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in gingival crevicular fluid during orthodontic tooth movement. European journal of orthodontics 31, 529–535, https://doi.org/10.1093/ejo/cjn127 (2009).

  • 42.

    Diercke, K., Sen, S., Kohl, A., Lux, C. J. & Erber, R. Compression-dependent up-regulation of ephrin-A2 in PDL fibroblasts attenuates osteogenesis. Journal of dental research 90, 1108–1115, https://doi.org/10.1177/0022034511413926 (2011).

  • 43.

    Edfors, F. et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Molecular systems biology 12, 883, https://doi.org/10.15252/msb.20167144 (2016).

  • 44.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Journal of pharmacology & pharmacotherapeutics 1, 94–99, https://doi.org/10.4103/0976-500X.72351 (2010).

  • 45.

    Jager, A. et al. Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. European journal of orthodontics 27, 1–11, https://doi.org/10.1093/ejo/cjh089 (2005).

  • 46.

    Ong, C. K., Walsh, L. J., Harbrow, D., Taverne, A. A. & Symons, A. L. Orthodontic tooth movement in the prednisolone-treated rat. The Angle orthodontist 70, 118–125, 10.1043/0003-3219(2000)070<0118:OTMITP>2.0.CO;2 (2000).

  • 47.

    Kirschneck, C. et al. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Scientific reports 7, 14751, https://doi.org/10.1038/s41598-017-15281-0 (2017).

  • 48.

    Untergasser, A. et al. Primer3–new capabilities and interfaces. Nucleic acids research 40, e115, https://doi.org/10.1093/nar/gks596 (2012).

  • 49.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408, https://doi.org/10.1006/meth.2001.1262 (2001).

  • 50.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nature methods 9, 676–682, https://doi.org/10.1038/nmeth.2019 (2012).

  • Source link

    Related Articles