Home Dental Radiology Reducing metal artifacts between implants in cone-beam CT by adjusting angular position of the subject

Reducing metal artifacts between implants in cone-beam CT by adjusting angular position of the subject

by adminjay


  • 1.

    Schulze R, Heil U, Gross D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol. 2011;40:265–73.

    Article 

    Google Scholar
     

  • 2.

    Barrett JF, Keat N. Artifacts in CT: recognition and avoidance. RadioGraphics. 2004;24:1679–91.

    Article 

    Google Scholar
     

  • 3.

    Glover G. Compton scatter effects in CT reconstructions. Med Phys. 1982;9:860–7.

    Article 

    Google Scholar
     

  • 4.

    Joseph PM, Spital RD. The effects of scatter in x-ray computed tomography. Med Phys. 1982;9:464–72.

    Article 

    Google Scholar
     

  • 5.

    De Man B, Nuyts J, Dupont P, Marchal G, Suetens P, editors. Metal streak artifacts in X-ray computed tomography: a simulation study. In: 1998 IEEE nuclear science symposium conference record 1998 IEEE nuclear science symposium and medical imaging conference (Cat No 98CH36255); 1998 Nov 8–14; Toronto, Canada. New York: IEEE; 1998. p. 1860–5.

  • 6.

    Draenert F, Coppenrath E, Herzog P, Muller S, Mueller-Lisse U. Beam hardening artefacts occur in dental implant scans with the NewTom® cone beam CT but not with the dental 4-row multidetector CT. Dentomaxillofac Radiol. 2007;36:198–203.

    Article 

    Google Scholar
     

  • 7.

    Schulze RK, Berndt D, d’Hoedt B. On cone-beam computed tomography artifacts induced by titanium implants. Clin Oral Implants Res. 2010;21:100–7.

    Article 

    Google Scholar
     

  • 8.

    Parsa A, Ibrahim N, Hassan B, Syriopoulos K, Stelt PVD. Assessment of metal artefact reduction around dental titanium implants in cone beam CT. Dentomaxillofac Radiol. 2014;43:19.

    Article 

    Google Scholar
     

  • 9.

    Iikubo M, Osano T, Sano T, Katsumata A, Ariji E, Kobayashi K, et al. Root canal filling materials spread pattern mimicking root fractures in dental CBCT images. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;120:521–7.

    Article 

    Google Scholar
     

  • 10.

    Makins SR. Artifacts interfering with interpretation of cone beam computed tomography images. Dent Clin North Am. 2014;58:485–95.

    Article 

    Google Scholar
     

  • 11.

    Candemil AP, Salmon B, Freitas DQ, Ambrosano GM, Haiter-Neto F, Oliveira ML. Metallic materials in the exomass impair cone beam CT voxel values. Dentomaxillofac Radiol. 2018;47:20180011.

    Article 

    Google Scholar
     

  • 12.

    Altunbas M, Shaw C, Chen L, Lai C, Liu X, Han T, et al. A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography. Med Physics. 2007;34:3109–18.

    Article 

    Google Scholar
     

  • 13.

    de Azevedo-Vaz SL, Peyneau PD, Ramirez-Sotelo LR, de Faria Vasconcelos K, Campos PSF, Haiter-Neto F. Efficacy of a cone beam computed tomography metal artifact reduction algorithm for the detection of peri-implant fenestrations and dehiscences. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;121:550–6.

    Article 

    Google Scholar
     

  • 14.

    Iramina H, Hamaguchi T, Nakamura M, Mizowaki T, Kanno I. Metal artifact reduction by filter-based dual-energy cone-beam computed tomography on a bench-top micro-CBCT system: concept and demonstration. J Radiat Res. 2018;59:511–20.

    Article 

    Google Scholar
     

  • 15.

    Katsumata A, Hirukawa A, Noujeim M, Okumura S, Naitoh M, Fujishita M, et al. Image artifact in dental cone-beam CT. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:652–7.

    Article 

    Google Scholar
     

  • 16.

    Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at ct: practical guide for radiologists. RadioGraphics. 2018;38(2):450–61.

    Article 

    Google Scholar
     

  • 17.

    Prell D, Kyriakou Y, Beister M, Kalender WA. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography. Phys Med Biol. 2009;54:6575.

    Article 

    Google Scholar
     

  • 18.

    Waggener RG, Levy LB, Rogers LF, Zanca P. Measured X-ray spectra from 25 to 110 kVp for a typical diagnostic unit. Radiology. 1972;105:169–75.

    Article 

    Google Scholar
     

  • 19.

    Zhang Y, Zhang L, Zhu XR, Lee AK, Chambers M, Dong L. Reducing metal artifacts in cone-beam CT images by preprocessing projection data. Int J Radiat Oncol Biol Phys. 2007;67:924–32.

    Article 

    Google Scholar
     

  • 20.

    Brown JH, Lustrin ES, Lev MH, Ogilvy CS, Taveras JM. Reduction of aneurysm clip artifacts on CT angiograms: a technical note. Am J Neuroradiol. 1999;20:694–6.

    PubMed 

    Google Scholar
     

  • 21.

    Lewis M, Toms AP, Reid K, Bugg W. CT metal artefact reduction of total knee prostheses using angled gantry multiplanar reformation. Knee. 2010;17:279–82.

    Article 

    Google Scholar
     

  • 22.

    Luckow M, Deyhle H, Beckmann F, Dagassan-Berndt D, Muller B. Tilting the jaw to improve the image quality or to reduce the dose in cone-beam computed tomography. Eur J Radiol. 2011;80:e389–93.

    Article 

    Google Scholar
     

  • 23.

    Codari M, de Faria Vasconcelos K, Ferreira Pinheiro Nicolielo L, Haiter Neto F, Jacobs R. Quantitative evaluation of metal artifacts using different CBCT devices, high-density materials and field of views. Clin Oral Implants Res. 2017;28:1509–14.

    Article 

    Google Scholar
     

  • 24.

    Pauwels R, Stamatakis H, Bosmans H, Bogaerts R, Jacobs R, Horner K, et al. Quantification of metal artifacts on cone beam computed tomography images. Clin Oral Implants Res. 2013;24:94–9.

    Article 

    Google Scholar
     

  • 25.

    Chiu TT, Sing KL. Evaluation of cervical range of motion and isometric neck muscle strength: reliability and validity. Clin Rehabil. 2002;16:851–8.

    Article 

    Google Scholar
     

  • 26.

    Lind B, Sihlbom H, Nordwall A, Malchau H. Normal range of motion of the cervical spine. Arch Phys Med Rehabil. 1989;70:692–5.

    PubMed 

    Google Scholar
     

  • 27.

    Queiroz PM, Santaella GM, Groppo FC, Freitas DQ. Metal artifact production and reduction in CBCT with different numbers of basis images. Imaging Sci Dent. 2018;48:41–4.

    Article 

    Google Scholar
     

  • 28.

    Bechara B, Moore W, McMahan C, Noujeim M. Metal artefact reduction with cone beam CT: an in vitro study. Dentomaxillofac Radiol. 2012;41:248–53.

    Article 

    Google Scholar
     

  • 29.

    Jo SY, Bayome M, Park J, Lim HJ, Kook YA, Han SH. Comparison of treatment effects between four premolar extraction and total arch distalization using the modified C-palatal plate. Korean J Orthod. 2018;48:224–35.

    Article 

    Google Scholar
     



  • Source link

    Related Articles