Home Dental Radiology Remarks on parabolic De Giorgi classes

Remarks on parabolic De Giorgi classes

by adminjay


In this section, we examine the role of (1.2). First of all, we present a standard lemma which asserts that (1.2) alone is sufficient to propagate positivity of u in measure for a short period of time (cf. [13]).

Proposition 4.1

Suppose u is nonnegative and satisfies (1.2)(_{-}). Assume for (M>0) and (alpha in (0,1)), we have ((s,s+varrho ^{p}]times K_{varrho }(y)subset E) and

$$begin{aligned} |[u(cdot , s)>M]cap K_{varrho }(y)|ge alpha |K_{varrho }|. end{aligned}$$

Then, there exist (delta , varepsilon in (0,1)) depending only on the data and (alpha ), such that

$$begin{aligned} |[u(cdot , t)>varepsilon M]cap K_{varrho }(y)|ge tfrac{1}{2}alpha |K_{varrho }| end{aligned}$$

for all times

$$begin{aligned} s<t<s+delta varrho ^{p}. end{aligned}$$

Proof

Assume ((y,s)=(0,0)). We may apply (1.2)(_{-}) with (k=M) in the cylinders

in such a case, we have for all (0<t<delta varrho ^{p}),

$$begin{aligned} int _{K_{(1-sigma )varrho }} (u(cdot ,t)-M)^{p}_- mathrm {d}x&le int _{K_{varrho }} (u(x,0)-M)^{p}_- mathrm {d}x+frac{gamma }{(sigma varrho )^{p}}iint _{Q_{o}}(u-M)^{p}_- mathrm {d}xmathrm {d}t\ {}&le int _{K_{varrho }} (u(x,0)-M)^{p}_- mathrm {d}x+gamma frac{M^{p}}{(sigma varrho )^{p}} |[u<M]cap Q_{o}|\ {}&le M^{p}left[ 1-alpha +gamma frac{delta }{sigma ^{p}}frac{|[u<M]cap Q_{o}|}{|Q_{o}|}right] |K_{varrho }|. end{aligned}$$

Set (ell =varepsilon M). The left-hand side of the above estimate can be bounded from below by

$$begin{aligned} int _{K_{(1-sigma )varrho }cap [ule ell ]} (u(cdot ,t)-M)^{p}_- mathrm {d}xge (1-varepsilon )^{p} M^{p}|A_{ell ,(1-sigma )varrho }(t)| end{aligned}$$

where we have defined, for some (varepsilon ) to be chosen, that

$$begin{aligned} A_{ell ,(1-sigma )varrho }(t)=[u(cdot ,t)le varepsilon M]cap K_{(1-sigma )varrho }. end{aligned}$$

Notice that

$$begin{aligned} |A_{ell ,varrho }(t)|&=|A_{ell ,(1-sigma )varrho }(t)cup (A_{ell ,varrho }(t) -A_{ell ,(1-sigma )varrho }(t))|\&le |A_{ell ,(1-sigma )varrho }(t)|+|K_{varrho }- K_{(1-sigma )varrho }|\&le |A_{ell ,(1-sigma )varrho }(t)|+Nsigma |K_{varrho }|. end{aligned}$$

Collecting all the above estimates yields that

$$begin{aligned} |A_{ell ,varrho }(t)|le frac{1-alpha }{(1-varepsilon )^{p}}|K_{varrho }| +Cfrac{delta }{sigma ^{p}}frac{|[u<M]cap Q_{o}|}{|Q_{o}|}|K_{varrho }| +Nsigma |K_{varrho }| end{aligned}$$

(4.1)

Finally, we may choose (varepsilon ), (sigma ) and (delta ), such that

$$begin{aligned} frac{1-alpha }{(1-varepsilon )^{p}}le 1-tfrac{3}{4}alpha ,quad Nsigma =tfrac{1}{8}alpha ,quad Cfrac{delta }{sigma ^{p}}le tfrac{1}{8}alpha . end{aligned}$$

(square )

Remark 4.1

One easily obtains the dependence of various constants on (alpha ) from the above proof, namely (varepsilon approx alpha ), (sigma approx alpha ) and (delta approx alpha ^{p+1}).

One wonders if the positivity in measure can be propagated further in time, i.e., (delta ) can be made large by choosing a proper (varepsilon ). It seems (1.2)(_{-}) alone is insufficient. In the theory of parabolic equations, a standard tool to achieve this is a logarithmic estimate. See [3], Chapter 2, Section 3]. We do not know if such a logarithmic estimate holds for functions in parabolic De Giorgi classes. However, we show in the following that a membership in (uin {mathfrak {B}}^{-}_{p}(E,gamma )) still ensures that the measure information of positivity propagates further in time.

Proposition 4.2

Suppose (uin {mathfrak {B}}^{-}_{p}(E,gamma )) is nonnegative. Assume for (A, M>0) and (alpha in (0,1)), we have ((s,s+Avarrho ^{p}]times K_{varrho }(y)subset E) and

$$begin{aligned} |[u(cdot , s)>M]cap K_{varrho }(y)|ge alpha |K_{varrho }|. end{aligned}$$

Then, there exist (varepsilon >0) depending on the data, A and (alpha ), such that

$$begin{aligned} |[u(cdot , t)>varepsilon M]cap K_{varrho }(y)|ge tfrac{1}{2}alpha |K_{varrho }| end{aligned}$$

for all

$$begin{aligned} s<t<s+Avarrho ^{p}. end{aligned}$$

Shrinking the measure of the set ([uapprox 0])

We first prove the following shrinking lemma due to De Giorgi (cf. [1]).

Lemma 4.1

Let (alpha , delta in (0,1)). Suppose there holds

$$begin{aligned} left| left[ u(cdot , t)>Mright] cap K_{varrho }right| ge alpha |K_{varrho }| quad text { for all }tin (s,s+delta varrho ^{p}]. end{aligned}$$

There exists (C>0) depending only on the data, such that for any positive integer (j_{*}), we have

$$begin{aligned} left| left[ ule frac{M}{2^{j_{*}}}right] cap Qright| le frac{C}{alpha delta ^{frac{1}{p}} j_{*}^{frac{p-1}{p}}}|Q|,quad text {where}Q=K_{varrho }times left( s,s+delta varrho ^{p}right] . end{aligned}$$

Proof

We assume ((y,s)=(0,0)) and set (k_j=2^{-j}M) for (j=0,1,ldots , j_{*}). Apply (1.1)(_{-}) for the pair of cylinders

$$begin{aligned} K_{varrho }times (0,delta varrho ^{p}]subset K_{2varrho }times (-delta varrho ^{p},delta varrho ^{p}], end{aligned}$$

such that

$$begin{aligned} iint _{Q}|D(u-k_j)_-|^{p} mathrm {d}xmathrm {d}tle frac{C}{delta varrho ^{p}}left( frac{M}{2^j}right) ^{p}|Q|. end{aligned}$$

(4.2)

Next, we apply [3], Chapter I, Lemma 2.2] to (u(cdot ,t)) for (tin left( 0,delta varrho ^{p}right] ) over the cube (K_{varrho }), for levels (k_{j+1}<k_{j}). Taking into account the measure theoretical information

$$begin{aligned} left| left[ u(cdot , t)>Mright] cap K_{varrho }right| ge alpha |K_{varrho }| quad text{ for } text{ all } tin (0,delta varrho ^{p}], end{aligned}$$

this gives

$$begin{aligned} frac{M}{2^{j+1}}&|[u(cdot ,t)<k_{j+1}]cap K_{varrho }|\&le frac{C varrho ^{N+1}}{|[u(cdot ,t)>k_j]cap K_{varrho }|}int _{[k_j<u(cdot ,t)<k_{j+1}] cap K_{varrho }}|Du| mathrm {d}x\&le frac{Cvarrho }{alpha }bigg (int _{[k_j<u(cdot ,t)<k_{j+1}]cap K_{varrho }}|Du|^{p} mathrm {d}xbigg )^{frac{1}{p}}\&quad times |([u(cdot ,t)<k_j]-[u(cdot ,t)<k_{j+1}])cap K_{varrho }|^{frac{p-1}{p}}. end{aligned}$$

Set

$$begin{aligned} A_j=[u<k_j]cap Q end{aligned}$$

and integrate the above estimate in (mathrm {d}t) over ((0,delta varrho ^{p}]); we obtain by using (4.2)

$$begin{aligned} frac{M}{2^j}|A_{j+1}|&le frac{Cvarrho }{alpha }bigg (iint _{Q}|D(u-k_j)_-|^{p} mathrm {d}xmathrm {d}tbigg )^frac{1}{p}(|A_j|-|A_{j+1}|)^frac{p-1}{p}\&le frac{C}{alpha delta ^{frac{1}{p}}}frac{M}{2^j}|Q|^{frac{1}{p}}(|A_j|-|A_{j+1}|)^frac{p-1}{p}. end{aligned}$$

Now take the power (frac{p}{p-1}) on both sides of the above inequality to obtain

$$begin{aligned} |A_{j+1}|^{frac{p}{p-1}}le frac{C}{alpha ^{frac{p}{p-1}} delta ^{frac{1}{p-1}}}|Q|^{frac{1}{p-1}}(|A_j|-|A_{j+1}|). end{aligned}$$

Add these inequalities from 0 to (j_{*}-1) to obtain

$$begin{aligned} j_{*} |A_{j_{*}}|^{frac{p}{p-1}}le sum _{j=0}^{j_{*}-1}|A_{j+1}|^{frac{p}{p-1}} le frac{C}{alpha ^{frac{p}{p-1}}delta ^{frac{1}{p-1}}}|Q|^{frac{p}{p-1}}. end{aligned}$$

From this, we conclude

$$begin{aligned} |A_{j_{*}}|le frac{C}{alpha delta ^{frac{1}{p}} j_{*}^{frac{p-1}{p}}}|Q|. end{aligned}$$

(square )

Proof of Proposition 4.2

We come back at (4.1) and choose

$$begin{aligned} sigma =delta ^{frac{1}{p+1}}left( frac{|[u<k]cap Q_{o}|}{|Q_{o}|}right) ^{frac{1}{p+1}}, end{aligned}$$

such that (4.1) becomes

$$begin{aligned} |A_{ell ,varrho }(t)|le bigg [frac{1-alpha }{(1-varepsilon )^{p}} +Cdelta ^{frac{1}{p+1}}left( frac{|[u<k]cap Q_{o}|}{|Q_{o}|}right) ^{frac{1}{p+1}} bigg ]|K_{varrho }|. end{aligned}$$

We choose (delta ) and (varepsilon ) such that

$$begin{aligned} Cdelta ^{frac{1}{p+1}}=tfrac{1}{8}alpha , quad frac{1-alpha }{(1-varepsilon )^{p}}<frac{1-frac{1}{2}alpha }{(1-varepsilon )^{p}}le 1-tfrac{1}{4}alpha . end{aligned}$$

(4.3)

As a result, we obtain

Having (varepsilon ) and (delta ) determined in (4.3), we use (1.2)(_{-}) again and repeat the above argument with

$$begin{aligned} M_{1}=varepsilon M,quad ell _{1}=frac{M_{1}}{2^{n_{1}+j_{1}}},quad k_{1}=frac{M_{1}}{2^{j_{1}}}, end{aligned}$$

where (j_{1}) and (n_{1}) are positive numbers to be determined. We may use the above measure theoretical information for (tin [s,s_{1}]), and apply Lemma 4.1 to obtain a refined estimate:

$$begin{aligned} |A_{ell _{1},varrho }(t)| le Bigg [frac{1-alpha }{(1- 2^{-n_{1}})^{2}} +Cdelta ^{frac{1}{p+1}}left( frac{1}{alpha delta ^{frac{1}{p}}j_{1}^{frac{p-1}{p}}}right) ^{frac{1}{p+1}}Bigg ]|K_{varrho }| quad text { for all },, tin [0, s_{1}]. end{aligned}$$

We choose (j_{1}) and (n_{1}), such that

$$begin{aligned} Cdelta ^{frac{1}{p+1}}left( frac{1}{alpha delta ^{frac{1}{p}}j_{1}^{frac{p-1}{p}}}right) ^{frac{1}{p+1}}le frac{delta alpha }{4A}, quad frac{1-alpha }{(1-2^{-n_{1}})^{2}}le 1-alpha +frac{delta alpha }{4A}. end{aligned}$$

As a result, we obtain that

$$begin{aligned} |A_{ell _{1},varrho }(t)|le left( 1-alpha +frac{delta alpha }{2A}right) |K_{varrho }| quad text { for all }tin [s,s_{1}]. end{aligned}$$

Now, we may proceed by induction. Suppose the construction has been made up to the ((i-1))-th step: the sequences ({M_{i}}), ({n_{i}}) and ({j_{i}}) have been chosen up to the ((i-1))-th step, and we have the measure theoretical information

$$begin{aligned} |A_{ell _{i-1},varrho }(t)|le left( 1-alpha +(i-1)frac{delta alpha }{2A}right) |K_{varrho }| quad text { for all }tin [s_{i-1},s_{i}], end{aligned}$$

where

Setting

$$begin{aligned} ell ^{varepsilon }_{i-1}=varepsilon widehat{M}_{i-1},quad s_{i+1}=s_{i}+delta varrho ^{p},quad Q_{i}=K_{varrho }times (s_{i}, s_{i+1}], end{aligned}$$

and using the above measure theoretical information at (t=s_{i}), we can repeat the above argument to obtain that, for all (tin [s_{i},s_{i+1}]),

$$begin{aligned} |A_{ell ^{varepsilon }_{i-1},varrho }(t)|le bigg [frac{1-alpha +(i-1)frac{1}{2A}delta alpha }{(1-varepsilon )^{2}} +Cdelta ^{frac{1}{p+1}}left( frac{|[u<ell _{i-1}]cap Q_{i}|}{|Q_{i}|}right) ^{frac{1}{p+1}}bigg ]|K_{varrho }|. end{aligned}$$

Assuming ((i-1)delta <A), we may choose (varepsilon ) and (delta ) as in (4.3); this ensures

$$begin{aligned} |A_{ell ^{varepsilon }_{i-1},varrho }(t)|le left( 1-tfrac{1}{8}alpha right) |K_{varrho } |quad text { for all }tin [s_{i},s_{i+1}]. end{aligned}$$

Now, we set

$$begin{aligned}&M_{i}=varepsilon widehat{M}_{i-1},quad ell _{i}=frac{ M_{i}}{2^{n_{i}+j_{i}}},quad k_{i}=frac{M_{i}}{2^{j_{i}}}, end{aligned}$$

where (j_{i}) and (n_{i}) are to be determined. Then, we use the above measure theoretical information in Lemma 4.1 to obtain a refined estimate: for all (tin [s_{i},s_{i+1}]),

$$begin{aligned} |A_{ell _{i},varrho }(t)|&le left[ frac{1-alpha +(i-1)frac{1}{2A}delta alpha }{(1-2^{-n_{i}})^{2}} +Cdelta ^{frac{1}{p+1}}left( frac{1}{alpha delta ^{frac{1}{p}}j_{i}^{frac{p-1}{p}}}right) ^ {frac{1}{p+1}}right] |K_{varrho }|. end{aligned}$$

We choose (j_{i}) and (n_{i}), such that

$$begin{aligned}&Cdelta ^{frac{1}{p+1}}left( frac{1}{alpha delta ^{frac{1}{p}}j_{i}^{frac{p-1}{p}}}right) ^{frac{1}{p+1}}le frac{delta alpha }{4A},\&frac{1-alpha +(i-1)frac{1}{2A}delta alpha }{(1-2^{-n_{i}})^{2}}le 1-alpha +(i-1)frac{delta alpha }{2A}+frac{delta alpha }{4A}. end{aligned}$$

As a result, we obtain that for all times (tin [s_{i},s_{i+1}]),

$$begin{aligned} |A_{ell _{i},varrho }(t)|le left( 1-alpha +ifrac{delta alpha }{2A}right) |K_{varrho }|. end{aligned}$$

The above argument terminates if (idelta ge A), and we reach the desired conclusion with the choice

$$begin{aligned} varepsilon M=frac{ M_{i}}{2^{n_{i}+j_{i}}}. end{aligned}$$



Source link

Related Articles