Home Dental Radiology The effect of zoledronic acid and denosumab on the mandible and other bones: a 18F-NaF-PET study

The effect of zoledronic acid and denosumab on the mandible and other bones: a 18F-NaF-PET study

by adminjay


  • Coleman RE. Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev. 2001;27:165–76.

    Article 

    Google Scholar
     

  • Lipton A. Management of bone metastases in breast cancer. Curr Treat Options Oncol. 2005;6:161–71.

    Article 

    Google Scholar
     

  • Coleman RE, Rubens RD. The clinical course of bone metastases from breast cancer. Br J Cancer. 1987;55:61–6.

    Article 

    Google Scholar
     

  • O’Reilly SM, Richards MA, Rubens RD. Liver metastases from breast cancer: the relationship between clinical, biochemical and pathological features and survival. Eur J Cancer (Oxford, England: 1990). 1990;26:574–7.

    Article 

    Google Scholar
     

  • Wu S, Dahut WL, Gulley JL. The use of bisphosphonates in cancer patients. Acta Oncol. 2007;46:581–91.

    Article 

    Google Scholar
     

  • McClung M, Harris ST, Miller PD, et al. Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med. 2013;126:13–20.

    Article 

    Google Scholar
     

  • Ruggiero SL, Dodson TB, Fantasia J, et al. American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw – 2014 update. J Oral Maxillofac Surg. 2014;72:1938–56.

    Article 

    Google Scholar
     

  • Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res. 2015;30:3–23.

    Article 

    Google Scholar
     

  • Takahashi M, Ozaki Y, Kizawa R, et al. Atypical femoral fracture in patients with bone metastasis receiving denosumab therapy: a retrospective study and systematic review. BMC Cancer. 2019;19:980.

    Article 

    Google Scholar
     

  • Limones A, Sáez-Alcaide LM, Díaz-Parreño SA, et al. Medication-related osteonecrosis of the jaws (MRONJ) in cancer patients treated with denosumab VS. zoledronic acid: a systematic review and meta-analysis. Med Oral Patologia Oral y Cirugia Bucal. 2020;25:e326–36.


    Google Scholar
     

  • Lockwood M, Banderudrappagari R, Suva LJ, Makhoul I. Atypical femoral fractures from bisphosphonate in cancer patients—review. J Bone Oncol. 2019;18:100259.

    Article 

    Google Scholar
     

  • Shane E, Burr D, Abrahamsen B, et al. Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2014;29:1–23.

    Article 

    Google Scholar
     

  • Gong X, Yu W, Zhao H, Su J, Sheng Q. Skeletal site-specific effects of zoledronate on in vivo bone remodeling and in vitro BMSCs Osteogenic Activity. Sci Rep. 2017;7:36129.

    Article 

    Google Scholar
     

  • Chang J, Hakam AE, McCauley LK. Current understanding of the pathophysiology of osteonecrosis of the jaw. Curr Osteoporos Rep. 2018;16:584–95.

    Article 

    Google Scholar
     

  • Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    PubMed 

    Google Scholar
     

  • Li Y, Schiepers C, Lake R, Dadparvar S, Berenji GR. Clinical utility of 18F-fluoride PET/CT in benign and malignant bone diseases. Bone. 2012;50:128–39.

    Article 

    Google Scholar
     

  • Even-Sapir E, Mishani E, Flusser G, Metser U. 18F-fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37:462–9.

    Article 

    Google Scholar
     

  • Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.

    Article 

    Google Scholar
     

  • Langsteger W, Rezaee A, Pirich C, Beheshti M. (18)F-NaF-PET/CT and (99m)Tc-MDP bone scintigraphy in the detection of bone metastases in prostate cancer. Semin Nucl Med. 2016;46:491–501.

    Article 

    Google Scholar
     

  • Ristow O, Gerngroß C, Schwaiger M, et al. Effect of antiresorptive drugs on bony turnover in the jaw: denosumab compared with bisphosphonates. Br J Oral Maxillofac Surg. 2014;52:308–13.

    Article 

    Google Scholar
     

  • Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48:677–92.

    Article 

    Google Scholar
     

  • Plotkin LI, Bivi N, Bellido T. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone. 2011;49:122–7.

    Article 

    Google Scholar
     

  • Rosen LS, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial—the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol. 2003;21:3150–7.

    Article 

    Google Scholar
     

  • Cole L, Vargo-Gogola T, Roeder R. Targeted delivery to bone and mineral deposits using bisphosphonate ligands. Adv Drug Deliv Rev. 2015;99:12.

    Article 

    Google Scholar
     

  • Lin JH. Bisphosphonates: a review of their pharmacokinetic properties. Bone. 1996;18:75–85.

    Article 

    Google Scholar
     

  • Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis*. Endocr Rev. 2000;21:115–37.

    PubMed 

    Google Scholar
     

  • Matsuura T, Mizumachi E, Katafuchi M, et al. Sex-related differences in cortical and trabecular bone quantities at the mandibular molar. J Hard Tissue Biol. 2014;23:267–74.

    Article 

    Google Scholar
     

  • Blau M, Ganatra R, Bender MA. 18F-fluoride for bone imaging. Semin Nucl Med. 1972;2:31–7.

    Article 

    Google Scholar
     

  • Cook GJ, Fogelman I. Detection of bone metastases in cancer patients by 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography. Q J Nucl Med. 2001;45:47–52.

    PubMed 

    Google Scholar
     

  • Bortot DC, Amorim BJ, Oki GC, et al. 18F-Fluoride PET/CT is highly effective for excluding bone metastases even in patients with equivocal bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:1730–6.

    Article 

    Google Scholar
     

  • Sarikaya I, Elgazzar AH, Sarikaya A, Alfeeli M. Normal bone and soft tissue distribution of fluorine-18-sodium fluoride and artifacts on 18F-NaF PET/CT bone scan: a pictorial review. Nucl Med Commun. 2017;38:810–9.

    Article 

    Google Scholar
     

  • Win AZ, Aparici CM. Normal SUV values measured from NaF18- PET/CT bone scan studies. PLoS ONE. 2014;9:e108429-e.

    Article 

    Google Scholar
     

  • Raje N, Woo S-B, Hande K, et al. Clinical, radiographic, and biochemical characterization of multiple myeloma patients with osteonecrosis of the jaw. Clin Cancer Res. 2008;14:2387–95.

    Article 

    Google Scholar
     

  • Arce K, Assael LA, Weissman JL, Markiewicz MR. Imaging findings in bisphosphonate-related osteonecrosis of jaws. J Oral Maxillofac Surg. 2009;67:75–84.

    Article 

    Google Scholar
     

  • Wilde F, Steinhoff K, Frerich B, et al. Positron-emission tomography imaging in the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;107:412–9.

    Article 

    Google Scholar
     



  • Source link

    Related Articles