Home Dental Radiology The missing link in image quality assessment in digital dental radiography

The missing link in image quality assessment in digital dental radiography

by adminjay


  • 1.

    ICRP. The 2007 recommendations of the International Commission on Radiological Protection: ICRP publication 103. Ann ICRP. 2007;37:1–332.


    Google Scholar
     

  • 2.

    Gröndahl HG. Digital radiology in dental diagnosis: a critical view. Dentomaxillofac Radiol. 1992;21:198–202.

    PubMed 

    Google Scholar
     

  • 3.

    Molander B, Gröndahl HG, Ekestubbe A. Quality of film-based and digital panoramic radiography. Dentomaxillofac Radiol. 2004;33:32–6.

    PubMed 

    Google Scholar
     

  • 4.

    Liang X, Jacobs R, Hassan B, Li L, Pauwels R, Corpas L, et al. A comparative evaluation of cone beam computed tomography (CBCT) and multi-slice CT (MSCT) Part I: on subjective image quality. Eur J Radiol. 2010;75:265–9.

    PubMed 

    Google Scholar
     

  • 5.

    Takeshita Y, Shimizu M, Okamura K, Yoshida S, Weerawanich W, Tokumori K, et al. A new method to evaluate image quality of CBCT images quantitatively without observers. Dentomaxillofac Radiol. 2017;46:20160331. https://doi.org/10.1259/dmfr.20160331.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Metz CE, Goodenough DJ, Rossmann K. Evaluation of receiver operating characteristic curve data in terms of information theory, with applications in radiography. Radiology. 1973;109:297–303.

    PubMed 

    Google Scholar
     

  • 7.

    Tsapaki V. Radiation protection in dental radiology—recent advances and future directions. Phys Med. 2017;44:222–6.

    PubMed 

    Google Scholar
     

  • 8.

    Verdun FR, Racine D, Ott JG, Tapiovaara MJ, Toroi P, Bochud FO, et al. Image quality in CT: from physical measurements to model observers. Phys Med. 2015;31:823–43.

    PubMed 

    Google Scholar
     

  • 9.

    Yoshiura K, Welander U, Kanda S. Theoretical consideration of radiological caries diagnosis: correlation between physical properties and diagnostic accuracy. Dent Jpn. 2005;41:101–6.


    Google Scholar
     

  • 10.

    Workman A, Brettle DS. Physical performance measures of radiographic imaging systems. Dentomaxillofac Radiol. 1997;26:139–46.

    PubMed 

    Google Scholar
     

  • 11.

    Metz CE, Wagner RF, Daoi K, Brown DG, Nishikawa RM, Myers KJ. Toward consensus on quantitative assessment of medical imaging systems. Med Phys. 1995;22:1057–61.

    PubMed 

    Google Scholar
     

  • 12.

    Takeshita Y, Shimizu M, Jasa GR, Weerawanich W, Okamura K, Yoshida S, et al. Prediction of detectability of the mandibular canal by quantitative image quality evaluation using cone beam CT. Dentomaxillofac Radiol. 2018;47:20170369. https://doi.org/10.1259/dmfr.20170369.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Jasa GR, et al. Evaluation of cone-beam computed tomography diagnostic image quality using cluster signal-to-noise analysis. Oral Radiol. 2018;35:59. https://doi.org/10.1007/s11282-018-0325-0.

    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Mouyen F, Benz C, Sonnabend E, Lodter JP. Presentation and physical evaluation of RadioVisioGraphy. Oral Surg Oral Med Oral Pathol. 1989;68:238–42.

    PubMed 

    Google Scholar
     

  • 15.

    Tyndall DA, Ludlow JB, Platin E, Nair M. A comparison of Kodak Ektaspeed Plus film and the Siemens Sidexis digital imaging system for caries detection using receiver operating characteristic analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:113–8.

    PubMed 

    Google Scholar
     

  • 16.

    Kullendorff B, Nilsson M, Rohlin M. Diagnostic accuracy of direct digital dental radiography for the detection of periapical bone lesions: overall comparison between conventional and direct digital radiography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1996;82:344–50.

    PubMed 

    Google Scholar
     

  • 17.

    Hintze H, Wenzel A, Jones C. In vitro comparison of D- and E-speed film radiography, RVG, and visualix digital radiography for the detection of enamel approximal and dentinal occlusal caries lesions. Caries Res. 1994;28:363–7.

    PubMed 

    Google Scholar
     

  • 18.

    Yoshiura K. Image quality assessment of digital intraoral radiography—perception to caries diagnosis. Jpn Dent Sci Rev. 2012;48:42–7.


    Google Scholar
     

  • 19.

    Yoshiura K, Nakayama E, Shimizu M, Goto TK, Chikui T, Kawazu T, et al. Effects of the automatic exposure compensation on the proximal caries diagnosis. Dentomaxillofac Radiol. 2005;34:140–4.

    PubMed 

    Google Scholar
     

  • 20.

    Yoshiura K, Okamura K, Tokumori K, Nakayama E, Chikui T, Goto TK, et al. Correlation between diagnostic accuracy and perceptibility. Dentomaxillofac Radiol. 2005;34:350–2.

    PubMed 

    Google Scholar
     

  • 21.

    Yoshiura K, Stamatakis H, Shi XQ, Welander U, McDavid WD, Kristoffersen J, et al. The perceptibility curve test applied to direct digital dental radiography. Dentomaxillofac Radiol. 1998;27:131–5.

    PubMed 

    Google Scholar
     

  • 22.

    Yoshiura K, Welander U, McDavid WD, Li G, Shi XQ, Nakayama E, et al. Comparison of the psychophysical properties of various intraoral film and digital systems by means of the perceptibility curve test. Dentomaxillofac Radiol. 2004;33:98–102.

    PubMed 

    Google Scholar
     

  • 23.

    Okamura K, Yoshiura K, Tatsumi M, Kawazu T, Chikui T, Shimizu M, et al. A new method for evaluating perceptible contrast information in digital intraoral radiographic systems. Oral Radiol. 2011;27:98–101.


    Google Scholar
     

  • 24.

    Yoshiura K, Kawazu T, Chikui T, Tatsumi M, Tokumori K, Tanaka T, et al. Assessment of image quality in dental radiography, part 1: phantom validity. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:115–22.

    PubMed 

    Google Scholar
     

  • 25.

    Yoshiura K, Kawazu T, Chikui T, Tatsumi M, Tokumori K, Tanaka T, et al. Assessment of image quality in dental radiography, part 2: optimum exposure conditions for detection of small mass changes in six intraoral radiography systems. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:123–9.

    PubMed 

    Google Scholar
     

  • 26.

    Barrett HH, Yao J, Rolland JP, Myers KJ. Model observers for assessment of image quality. Proc Natl Acad Sci U S A. 1993;90:9758–65.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Yoshiura K, Stamatakis HC, Welander U, McDavid WD, Shi XQ, Ban S, et al. Prediction of perceptibility curves of direct digital intraoral radiographic systems. Dentomaxillofac Radiol. 1999;28:224–31.

    PubMed 

    Google Scholar
     

  • 28.

    Yoshida S, Okamura K, Tokumori K, Shimizu M, Takeshita Y, Weerawanich W, et al. Development of a new method for evaluating radiographic image quality using just noticeable differences. Dental Radiol. 2016;56:27–322 (In Japanese).


    Google Scholar
     

  • 29.

    Sabarudin A, Tiau YJ. Image quality assessment in panoramic dental radiography: a comparative study between conventional and digital systems. Quant Imaging Med Surg. 2013;3:43–8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Parissis N, Angelopoulos C, Mantegari S, Karamanis S, Masood F, Tsirlis A. A comparison of panoramic image quality between a digital radiography storage phosphor system and a film-based system. J Contemp Dent Pract. 2010;11:E009–16.

    PubMed 

    Google Scholar
     

  • 31.

    Gijbels F, Sanderink G, Bou Serhal C, Pauwels H, Jacobs R. Organ doses and subjective image quality of indirect digital panoramic radiography. Dentomaxillofac Radiol. 2001;30:308–13.

    PubMed 

    Google Scholar
     

  • 32.

    Tatsumi M, Yoshiura K, Yuasa K, Tabata O, Nakayama E, Kawazu T, et al. Clinical evaluation of “Veraviewepocs” digital panoramic X-ray system. Int J Comput Dent. 2000;3:183–95.

    PubMed 

    Google Scholar
     

  • 33.

    Svenson B, Larsson L, Båth M. Optimization of exposure in panoramic radiography while maintaining image quality using adaptive filtering. Acta Odontol Scand. 2016;74:229–35.

    PubMed 

    Google Scholar
     

  • 34.

    Shiojima M, Naitoh M. Development of test phantom for measuring the image layer in rotational panoramic radiography. Dent Jpn. 1995;32:96–9.


    Google Scholar
     

  • 35.

    Gavala S, Donta C, Tsiklakis K, Boziari A, Kamenopoulou V, Stamatakis HC. Radiation dose reduction in direct digital panoramic radiography. Eur J Radiol. 2009;71:42–8.

    PubMed 

    Google Scholar
     

  • 36.

    Katsumata A, Ogawa K, Inukai K, Matsuoka M, Nagano T, Nagaoka H, et al. Initial evaluation of linear and spatially oriented planar images from a new dental panoramic system based on tomosynthesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:375–82.

    PubMed 

    Google Scholar
     

  • 37.

    Pauwels R, Araki K, Siewerdsen JH, Thongvigitmanee SS. Technical aspects of dental CBCT: state of the art. Dentomaxillofac Radiol. 2015;44:20140224. https://doi.org/10.1259/dmfr.20140224.

    PubMed 
    Article 

    Google Scholar
     

  • 38.

    Minami S, Ohnishi T, Sano T, Sugiura K, Nakayama E. Comparison between cone-beam CT and multidetector-row CT by ROC analysis regarding diagnostic accuracy for artificial alveolar bone defects in the mandibular molar region. Oral Radiol. 2015;31:97–104.


    Google Scholar
     

  • 39.

    Okano T, Sur J. Radiation dose and protection in dentistry. Jpn Dent Sci Rev. 2010;46:112–21.


    Google Scholar
     

  • 40.

    Hayashi T, Arai Y, Chikui T, Hayashi-Sakai S, Honda K, Indo H, et al. Clinical guidelines for dental cone-beam computed tomography. Oral Radiol. 2018;34:89–104.

    PubMed 

    Google Scholar
     

  • 41.

    Torgersen GR, Hol C, Moystad A, Hellen-Halme K, Nilsson M. A phantom for simplified image quality control of dental cone beam computed tomography units. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:603–11.

    PubMed 

    Google Scholar
     

  • 42.

    Gong H, Yu L, Leng S, Dilger S, Zhou W, Ren L, et al. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT. Proc SPIE Int Soc Opt Eng. 2018;10577:105770M. https://doi.org/10.1117/12.2294955.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 43.

    Weerawanich W, Shimizu M, Takeshita Y, Okamura K, Yoshida S, Yoshiura K. Cluster signal-to-noise analysis for evaluation of the information content in an image. Dentomaxillofac Radiol. 2018;47:20170147. https://doi.org/10.1259/dmfr.20170147.

    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Jasa GR, Shimizu M, Okamura K, Tokumori K, Takeshita Y, Weerawanich W, et al. Effects of exposure parameters and slice thickness on detecting clear and unclear mandibular canals using cone beam CT. Dentomaxillofac Radiol. 2017;46:20160315. https://doi.org/10.1259/dmfr.20160315.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 45.

    Izawa M, Harata Y, Shiba N, Koizumi N, Ozawa T, Takahashi N, et al. Establishment of local diagnostic reference levels for quality control in intraoral radiography. Oral Radiol. 2017;33:38–44.

    PubMed 

    Google Scholar
     

  • 46.

    Ono K, Kondo Y, Ichikawa T, Asada Y. Evaluation of the patient exposure in general radiography for some facilities: comparison with DRL and evaluation of the difference among facilities. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2017;73:556–62 (In Japanese).

    PubMed 

    Google Scholar
     

  • 47.

    Gala HH, Torresin A, Dasu A, Rampado O, Delis H, Girón IH, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med. 2017;39:67–72.


    Google Scholar
     

  • 48.

    Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31:441–50.

    PubMed 

    Google Scholar
     

  • 49.

    Talebi H, Milanfar P. NIMA: neural image assessment. IEEE Trans Image Process. 2018;27:3998–4011.


    Google Scholar
     

  • 50.

    Brullmann D, Schulze RKW. Spatial resolution in CBCT machines for dental/maxillofacial applications-what do we know today? Dentomaxillofac Radiol. 2015;44:20140204. https://doi.org/10.1259/dmfr.20140204.

    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Hayakawa Y, Eraso FE, Scarfe WC, Farman AG, Nishikawa K, Kuroyanagi K, et al. Technical note: Modulation transfer function analysis of a newly revised rotational panoramic machine. Dentomaxillofac Radiol. 1996;25:302–6.

    PubMed 

    Google Scholar
     

  • 52.

    Nishikawa K, Ooguro T, Kuroyanagi K. Comparisons of physical imaging properties among three kinds of imaging plates used in photostimulable phosphor systems for dental radiography. Bull Tokyo Dent Coll. 2002;43:23–30.

    PubMed 

    Google Scholar
     



  • Source link

    Related Articles