Home Orthodontics Thread shape, cortical bone thickness, and magnitude and distribution of stress caused by the loading of orthodontic miniscrews: finite element analysis

Thread shape, cortical bone thickness, and magnitude and distribution of stress caused by the loading of orthodontic miniscrews: finite element analysis

by adminjay


  • Kuroda, S. & Tanaka, E. Usage of TADs for treatment of adult Class III malocclusion. Semin. Orthod. 17, 91–97 (2011).

    Article 

    Google Scholar
     

  • Kuroda, S., Sugawara, Y., Deguchi, T., Kyung, H. M. & Takano-Yamamoto, T. Clinical use of miniscrew implants as orthodontic anchorage: Success rates and postoperative discomfort. Am. J. Orthod. Dentofacial. Orthop. 131, 9–15 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Finke, H., Koos, B., Fischer-Brandies, H. & Es-Souni, M. In vitro biocompatibility of orthodontic miniscrews with human gingival fibroblast and SAOS-2 osteoblast cultures. J. Orofac. Orthop. 79, 328–336 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Galeotti, A. et al. Effects of pH on in vitro biocompatibility of orthodontic miniscrew implants. Prog. Orthod. 14, 15 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wilmes, B., Ottenstreuer, S., Su, Y. Y. & Drescher, D. Impact of implant design on primary stability of orthodontic mini-implants. J. Orofac. Orthop. 69, 42–50 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Kyung, H. M., Park, H. S., Bae, S. M., Sung, J. H. & Kim, I. B. Development of orthodontic micro-implants for intraoral anchorage. J. Clin. Orthod. 37, 321–328 (2003).

    PubMed 

    Google Scholar
     

  • Sakai, Y., Kuroda, S., Murshid, S. A. & Takano-Yamamoto, T. Skeletal Class III severe openbite treatment using implant anchorage. Angle Orthod. 78, 157–166 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Kuroda, S. & Tanaka, E. Risks and complications of miniscrew anchorage in clinical orthodontics. Jpn. Dent. Sci. Rev. 50, 79–85 (2014).

    Article 

    Google Scholar
     

  • Papageorgiou, S. N., Zogakis, I. P. & Papadopoulos, M. A. Failure rates and associated risk factors of orthodontic miniscrew implants: A meta-analysis. Am. J. Orthod. Dentofacial. Orthop. 142, 577–595 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Ozdemir, F., Tozlu, M. & Cakan, D. G. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am. J. Orthod. Dentofacial. Orthop. 143, 190–196 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Shah, A. H., Behrents, R. G., Kim, K. B., Kyung, H. M. & Buschang, P. H. Effects of screw and host factors on insertion torque and pullout strength. Angle Orthod. 82, 603–610 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Wu, T. Y., Kuang, S. H. & Wu, C. H. Factors associated with the stability of mini-implants for orthodontic anchorage: A study of 414 samples in Taiwan. J. Oral. Maxillofac. Surg. 67, 1595–1599 (2009).

    PubMed 
    Article 

    Google Scholar
     

  • Lee, N. K. & Baek, S. H. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am. J. Orthod. Dentofacial. Orthop. 138(8), e1-8 (2010).


    Google Scholar
     

  • Çehreli, S. & Özçırpıcı, A. A. Primary stability and histomorphometric bone-implant contact of self-drilling and self-tapping orthodontic microimplants. Am. J. Orthod. Dentofacial. Orthop. 141, 187–195 (2012).

    PubMed 
    Article 

    Google Scholar
     

  • Cha, J. Y., Kil, J. K., Yoon, T. M. & Hwang, C. J. Miniscrew stability evaluated with computerized tomography scanning. Am. J. Orthod. Dentofacial. Orthop. 137, 73–79 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Holmgren, E. P., Seckinger, R. J., Kilgren, L. M. & Mante, F. Evaluating parameters of osseointegrated dental implants using finite element analysis: A two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J. Oral. Implantol. 24, 80–88 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Motoyoshi, M., Yoshida, T., Ono, A. & Shimizu, N. Effect of cortical bone thickness and implant placement torque on stability of orthodontic mini-implant. Int. J. Oral. Maxillofac. Imp. 22, 779–784 (2007).


    Google Scholar
     

  • Mesa, F. et al. Multivariate study of factors influencing primary dental implant stability. Clin. Oral. Implants. Res. 19, 196–200 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • Huja, S. S., Litsky, A. S., Beck, F. M., Johnson, K. A. & Larsen, P. E. Pullout strength of monocortical screws placed in the maxillae and mandibles of dogs. Am. J. Orthod. Dentofac. Orthop. 127, 307–313 (2005).

    Article 

    Google Scholar
     

  • Motoyoshi, M., Hirabayashi, M., Uemura, M. & Shimizu, N. Recommended placement torque when tightening an orthodontic mini-implant. Clin. Oral. Implants. Res. 17, 109–114 (2006).

    PubMed 
    Article 

    Google Scholar
     

  • Ono, A., Motoyoshi, M. & Shimizu, N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int. J. Oral. Maxillofac. Surg. 37, 334–340 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Motoyoshi, M., Inaba, M., Ono, A. & Shimizu, N. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int. J. Oral. Maxillofac. Surg. 38, 13–18 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tolstunov, L. Implant zones of the jaws: Implant location and related success rate. J. Oral. Implantol. 33, 211–220 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Salmória, K. K. et al. Insertional torque and axial pull-out strength of mini-implants in mandibles of dogs. Am. J. Orthod. Dentofacial. Orthop. 133(790), e15-22 (2008).


    Google Scholar
     

  • Lin, T. S., Tsai, F. D., Chen, C. Y. & Lin, L. W. Factorial analysis of variables affecting bone stress adjacent to the orthodontic anchorage mini-implant with finite element analysis. Am. J. Orthod. Dentofacial. Orthop. 143, 182–189 (2013).

    PubMed 
    Article 

    Google Scholar
     

  • Yépez, J. E., Marangon, R. M., Saga, A. Y., de Lima, K. F. & Tanaka, O. M. Miniscrew composition, transmucosal profile, and cortical bone thickness: A three-dimensional finite-element analysis of stress fields. J. Contemp. Dent. Pract. 19, 881–887 (2018).

    PubMed 
    Article 

    Google Scholar
     

  • Hirai, Y. et al. Influence of insertion depth on stress distribution in orthodontic miniscrew and the surrounding bone by finite element analysis. Dent. Mater. J. 40, 1270–1276 (2021).

    PubMed 
    Article 

    Google Scholar
     

  • Ghorbanyjavadpour, F., Kazemi, P., Moradinezhad, M. & Rakhshan, V. Distribution and amount of stresses caused by insertion or removal of orthodontic miniscrews into the maxillary bone: A finite element analysis. Int. Orthod. 17, 758–763 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Watanabe, K. et al. Mechanical stability of orthodontic miniscrew depends on a thread shape. J. Dent. Sci. 17, 1244–1252 (2022).

    PubMed 
    Article 

    Google Scholar
     

  • Han, C. M. et al. Evaluation of miniscrew type-dependent mechanical stability. Clin. Biomech. 69, 21–27 (2019).

    Article 

    Google Scholar
     

  • The Japan Titanium Society. https://titan-japan.com/indexe.htm (2002).

  • Dechow, P. C., Panagiotopoulou, O. & Gharpure, P. Biomechanical implications of cortical elastic properties of the macaque mandible. Zoology 124, 3–12 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • Öhman, C. et al. Compressive behaviour of child and adult cortical bone. Bone 49, 769–776 (2011).

    PubMed 
    Article 

    Google Scholar
     

  • Bini, F., Marinozzi, A., Marinozzi, F. & Patane, F. Microtensile measurements of single trabeculae stiffness in human femur. J. Biomech. 35, 1515–1519 (2003).

    Article 

    Google Scholar
     

  • Cornelis, M. A., Scheffler, N. R., De Clerck, H. J., Tulloch, J. F. & Behets, C. N. Systemic review of the experimental use of temporary skeletal anchorage devices in orthodontics. Am. J. Orthod. Dentofacial. Orthop. 131, S52–S58 (2007).

    PubMed 
    Article 

    Google Scholar
     

  • Barlow, M. & Kula, K. Factors influencing efficiency of sliding mechanics to close extraction space: A systematic review. Orthod. Craniofac. Res. 11, 65–73 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Edwards, P. & Ramulu, M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Mater. Sci. Eng. A 598, 327–337 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Choy, S. Y., Sun, C. N., Leong, K. F. & Wei, J. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Addit. Manuf. 16, 213–224 (2017).

    CAS 

    Google Scholar
     

  • Li, S. J. et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Mater. 60, 793–802 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Senalp, A. Z., Kayabasi, O. & Kurataran, H. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater. Des. 28, 1577–1583 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Kuroda, S., Inoue, M., Kyung, H. M., Koolstra, J. H. & Tanaka, E. Stress distribution in obliquely inserted orthodontic miniscrews evaluated by three-dimensional finite-element analysis. Int. J. Oral. Maxillofac. Imp. 32, 344–349 (2017).

    Article 

    Google Scholar
     

  • Marquezan, M., Mattos, C. T., Sant’Anna, E. F. & Maia, L. C. Does cortical bone thickness influence the primary stability of miniscrews? A systematic review and meta-analysis. Angle Orthod. 84, 1093–1103 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zaretsky, E. V. Fatigue criterion to system design, life, and reliability. J. Propuls. Power 3, 76–83 (1987).

    Article 

    Google Scholar
     

  • Mehboob, H. et al. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. J. Mater. Sci. Mater. Med. 31, 78 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pan, C. Y. et al. Effects of cortical bone thickness and trabecular bone density on primary stability of orthodontic mini-implants. J. Dent. Sci. 14, 383–388 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wang, Y., Mori, R., Ozoe, N., Nakai, T. & Uchio, Y. Proximal half angle of the screw thread is a critical design variable affecting the pull-out strength of cancellous bone screws. Clin. Biomech. 24, 781–785 (2009).

    Article 

    Google Scholar
     

  • Eekhoff, J. D. et al. Fascicular elastin within tendon contributes to the magnitude and modulus gradient of the elastic stress response across tendon type and species. Acta Biomater. S1742–7061, 00156–00158 (2022).


    Google Scholar
     

  • Inoue, M. et al. Torque ratio as a predictable factor on primary stability of orthodontic miniscrew implants. Implant Dent. 3, 576–581 (2014).


    Google Scholar
     



  • Source link

    Related Articles