Andrews, L. F. The six keys to normal occlusion. Am. J. Orthod. 62, 296–309. https://doi.org/10.1016/s0002-9416(72)90268-0 (1972).
Turp, J. C., Greene, C. S. & Strub, J. R. Dental occlusion: A critical reflection on past, present and future concepts. J. Oral Rehabil. 35, 446–453. https://doi.org/10.1111/j.0305-182X.2007.01820.x (2008).
Lee, S. M. & Lee, J. W. Computerized occlusal analysis: correlation with occlusal indexes to assess the outcome of orthodontic treatment or the severity of malocculusion. Korean J. Orthod. 46, 27–35 https://doi.org/10.4041/kjod.2016.46.1.27 (2016).
Chiqueto, K. et al. Influence of root parallelism on the stability of extraction-site closures. Am. J. Orthod. Dentofac. Orthop. 139, e505–e510. https://doi.org/10.1016/j.ajodo.2010.11.019 (2011).
Wehrbein, H., Bauer, W. & Diedrich, P. Mandibular incisors, alveolar bone, and symphysis after orthodontic treatment. A retrospective study. Am. J. Orthod. Dentofac. Orthop. 110, 239–246. https://doi.org/10.1016/s0889-5406(96)80006-0 (1996).
Bouwens, D. G., Cevidanes, L., Ludlow, J. B. & Phillips, C. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 139, 126–132. https://doi.org/10.1016/j.ajodo.2010.05.016 (2011).
Pittayapat, P. et al. Agreement between cone beam computed tomography images and panoramic radiographs for initial orthodontic evaluation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 117, 111–119. https://doi.org/10.1016/j.oooo.2013.10.016 (2014).
Hou, D., Capote, R., Bayirli, B., Chan, D. C. N. & Huang, G. The effect of digital diagnostic setups on orthodontic treatment planning. Am. J. Orthod. Dentofac. Orthop. 157, 542–549. https://doi.org/10.1016/j.ajodo.2019.09.008 (2020).
Im, J., Cha, J. Y., Lee, K. J., Yu, H. S. & Hwang, C. J. Comparison of virtual and manual tooth setups with digital and plaster models in extraction cases. Am. J. Orthod. Dentofac. Orthop. 145, 434–442. https://doi.org/10.1016/j.ajodo.2013.12.014 (2014).
Barreto, M. S., Faber, J., Vogel, C. J. & Araujo, T. M. Reliability of digital orthodontic setups. Angle Orthod. 86, 255–259. https://doi.org/10.2319/120914-890.1 (2016).
Yoon, J. H. et al. Model analysis of digital models in moderate to severe crowding: In vivo validation and clinical application. Biomed. Res. Int. 2018, 8414605. https://doi.org/10.1155/2018/8414605 (2018).
Im, J. et al. Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. Sci. Rep. 12, 9429. https://doi.org/10.1038/s41598-022-13595-2 (2022).
Lee, R. J. et al. Three-dimensional monitoring of root movement during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 147, 132–142. https://doi.org/10.1016/j.ajodo.2014.10.010 (2015).
Lee, R. J. et al. Three-dimensional evaluation of root position at the reset appointment without radiographs: A proof-of-concept study. Prog. Orthod. 19, 15. https://doi.org/10.1186/s40510-018-0214-4 (2018).
Lee, R. J. et al. Accuracy and reliability of the expected root position setup methodology to evaluate root position during orthodontic treatment. Am. J. Orthod. Dentofacial Orthop. 154, 583–595. https://doi.org/10.1016/j.ajodo.2018.05.010 (2018).
Shin, S.-H., Hyung-Seog, Y., Cha, J.-Y., Kwon, J.-S. & Hwang, C.-J. Scanning accuracy of bracket features and slot base angle in different bracket materials by four intraoral scanners: An in vitro study. Materials 14(2), 365. https://doi.org/10.3390/ma14020365 (2021).
Hou, Y., Zhao, Y., Wang, Y., Wang, S. & Liu, Y. A pilot study of root position in orthodontic diagnosis model set-up. Zhonghua Kou Qiang Yi Xue Za Zhi 50, 631–635 (2015).
Mavropoulos, A., Karamouzos, A., Kiliaridis, S. & Papadopoulos, M. A. Efficiency of noncompliance simultaneous first and second upper molar distalization: A three-dimensional tooth movement analysis. Angle Orthod. 75, 532–539. https://doi.org/10.1043/0003-3219(2005)75[532:EONSFA]2.0.CO;2 (2005).
Mohamed, R. N., Basha, S. & Al-Thomali, Y. Maxillary molar distalization with miniscrew-supported appliances in Class II malocclusion: A systematic review. Angle Orthod. 88, 494–502. https://doi.org/10.2319/091717-624.1 (2018).
Pham, V. & Lagravère, M. O. Alveolar bone level changes in maxillary expansion treatments assessed through CBCT. Int. Orthod. 15, 103–113. https://doi.org/10.1016/j.ortho.2016.12.002 (2017).
Nakada, T., Motoyoshi, M., Horinuki, E. & Shimizu, N. Cone-beam computed tomography evaluation of the association of cortical plate proximity and apical root resorption after orthodontic treatment. J. Oral Sci. 58, 231–236. https://doi.org/10.2334/josnusd.15-0566 (2016).
Vardimon, A. D., Oren, E. & Ben-Bassat, Y. Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements. Am. J. Orthod. Dentofac. Orthop. 114, 520–529. https://doi.org/10.1016/s0889-5406(98)70172-6 (1998).
Park, G. Posterior anatomic limit for distalization of maxillary dentition (Department of Medicine, Yonsei University, 2020).
Kim, S. J., Choi, T. H., Baik, H. S., Park, Y. C. & Lee, K. J. Mandibular posterior anatomic limit for molar distalization. Am. J. Orthod. Dentofac. Orthop. 146, 190–197. https://doi.org/10.1016/j.ajodo.2014.04.021 (2014).
Garib, D. G., Henriques, J. F., Janson, G., de Freitas, M. R. & Fernandes, A. Y. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: A computed tomography evaluation. Am. J. Orthod. Dentofac. Orthop. 129, 749–758. https://doi.org/10.1016/j.ajodo.2006.02.021 (2006).
Wang, H., Zhao, N., Li, P. & Shen, G. A cone-beam computed tomography analysis of angulation and inclination of whole tooth and clinical crown in adults with normal occlusion. Orthod. Craniofac. Res. 22, 337–344. https://doi.org/10.1111/ocr.12332 (2019).
Vermylen, K., De Quincey, G. N. T., van Hof, M. A., Wolffe, G. N. & Renggli, H. H. Classification, reproducibility and prevalence of root proximity in periodontal patients. J. Clin. Periodontol. 32(3), 254–259. https://doi.org/10.1111/j.1600-051X.2005.00667.x (2005).
Graber, T. M. Postmortems in posttreatment adjustment. Am. J. Orthod. 52, 331–352. https://doi.org/10.1016/0002-9416(66)90151-5 (1966).
Edwards, J. G. The prevention of relapse in extraction cases. Am. J. Orthod. 60, 128–144. https://doi.org/10.1016/0002-9416(71)90029-7 (1971).
Hatasaka, H. H. A radiographic study of roots in extraction sites. Angle Orthod. 46, 64–68. https://doi.org/10.1043/0003-3219(1976)046%3c0064:ARSORI%3e2.0.CO;2 (1976).
Yeom, H. G. et al. Correlation between spatial resolution and ball distortion rate of panoramic radiography. BMC Med. Imaging 20, 68. https://doi.org/10.1186/s12880-020-00472-5 (2020).
Lucchesi, M. V., Wood, R. E. & Nortje, C. J. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am. J. Orthod. Dentofac. Orthop. 94, 303–310. https://doi.org/10.1016/0889-5406(88)90055-8 (1988).
Garcia-Figueroa, M. A., Raboud, D. W., Lam, E. W., Heo, G. & Major, P. W. Effect of buccolingual root angulation on the mesiodistal angulation shown on panoramic radiographs. Am. J. Orthod. Dentofac. Orthop. 134, 93–99. https://doi.org/10.1016/j.ajodo.2006.07.034 (2008).
Tong, H., Enciso, R., Van Elslande, D., Major, P. W. & Sameshima, G. T. A new method to measure mesiodistal angulation and faciolingual inclination of each whole tooth with volumetric cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 142, 133–143. https://doi.org/10.1016/j.ajodo.2011.12.027 (2012).
Lee, W. C. et al. Crown morphology of the mandibular first molars with distolingual roots. J. Dent. Sci. 11, 189–195. https://doi.org/10.1016/j.jds.2015.07.007 (2016).
Casko, J. S. et al. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am. J. Orthod. Dentofac. Orthop. 114, 589–599. https://doi.org/10.1016/s0889-5406(98)70179-9 (1998).
Handelman, C. S. The anterior alveolus: Its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 66, 95–109 (1996).
Evangelista, K. et al. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am. J. Orthodont. Dentofac. Orthoped. 138(2), 133e1-133e7. https://doi.org/10.1016/j.ajodo.2010.02.021 (2010).
Leung, C. C., Palomo, L., Griffith, R. & Hans, M. G. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am. J. Orthod. Dentofac. Orthop. 137, S109-119. https://doi.org/10.1016/j.ajodo.2009.07.013 (2010).
Rupprecht, R. D., Horning, G. M., Nicoll, B. K. & Cohen, M. E. Prevalence of dehiscences and fenestrations in modern American skulls. J. Periodontol. 72, 722–729. https://doi.org/10.1902/jop.2001.72.6.722 (2001).
Jorgic-Srdjak, K., Plancak, D., Bosnjak, A. & Azinovic, Z. Incidence and distribution of dehiscences and fenestrations on human skulls. Coll. Antropol. 22(Suppl), 111–116 (1998).
Davies, R. M., Downer, M. C., Hull, P. S. & Lennon, M. A. Alveolar defects in human skulls. J. Clin. Periodontol. 1, 107–111. https://doi.org/10.1111/j.1600-051x.1974.tb01245.x (1974).
Edel, A. Alveolar bone fenestrations and dehiscences in dry Bedouin jaws. J. Clin. Periodontol. 8, 491–499. https://doi.org/10.1111/j.1600-051x.1981.tb00898.x (1981).
Ye, N. et al. Accuracy of in-vitro tooth volumetric measurements from cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 142, 879–887. https://doi.org/10.1016/j.ajodo.2012.05.020 (2012).
Liu, Y. et al. The validity of in vivo tooth volume determinations from cone-beam computed tomography. Angle Orthod. 80, 160–166. https://doi.org/10.2319/121608-639.1 (2010).
Dong, T. et al. Accuracy of in vitro mandibular volumetric measurements from CBCT of different voxel sizes with different segmentation threshold settings. BMC Oral Health 19, 206. https://doi.org/10.1186/s12903-019-0891-5 (2019).
Hassan, B., Couto Souza, P., Jacobs, R., de Azambuja Berti, S. & van der Stelt, P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin. Oral Investig. 14, 303–310. https://doi.org/10.1007/s00784-009-0291-3 (2010).
Fourie, Z., Damstra, J., Schepers, R. H., Gerrits, P. O. & Ren, Y. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography. Eur. J. Radiol. 81, e524–e530. https://doi.org/10.1016/j.ejrad.2011.06.001 (2012).
Sathapana, S., Forrest, A., Monsour, P. & Naser-ud-Din, S. Age-related changes in maxillary and mandibular cortical bone thickness in relation to temporary anchorage device placement. Aust. Dent. J. 58, 67–74. https://doi.org/10.1111/adj.12018 (2013).
Cao, T., Xu, L., Shi, J. & Zhou, Y. Combined orthodontic-periodontal treatment in periodontal patients with anteriorly displaced incisors. Am. J. Orthod. Dentofac. Orthop. 148, 805–813. https://doi.org/10.1016/j.ajodo.2015.05.026 (2015).
Ramos, A. L., Dos Santos, M. C., de Almeida, M. R. & Mir, C. F. Bone dehiscence formation during orthodontic tooth movement through atrophic alveolar ridges. Angle Orthod. 90, 321–329. https://doi.org/10.2319/063019-443.1 (2020).
Yagci, A. et al. Dehiscence and fenestration in skeletal Class I, II, and III malocclusions assessed with cone-beam computed tomography. Angle Orthod. 82, 67–74. https://doi.org/10.2319/040811-250.1 (2012).
Lee, R. J. et al. Accuracy of the expected root position setup to monitor root angulations and inclinations during orthodontic treatment: A pilot study. J. Indian Orthod. Soc. 52, 44–50. https://doi.org/10.4103/jios.jios_242_17 (2019).
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31, 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 (2006).
Sun, L. et al. Changes of alveolar bone dehiscence and fenestration after augmented corticotomy-assisted orthodontic treatment: a CBCT evaluation. Prog. Orthod. 20, 7. https://doi.org/10.1186/s40510-019-0259-z (2019).