Home Orthodontics Three-dimensional evaluation of a virtual setup considering the roots and alveolar bone in molar distalization cases

Three-dimensional evaluation of a virtual setup considering the roots and alveolar bone in molar distalization cases

by adminjay


  • Andrews, L. F. The six keys to normal occlusion. Am. J. Orthod. 62, 296–309. https://doi.org/10.1016/s0002-9416(72)90268-0 (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Turp, J. C., Greene, C. S. & Strub, J. R. Dental occlusion: A critical reflection on past, present and future concepts. J. Oral Rehabil. 35, 446–453. https://doi.org/10.1111/j.0305-182X.2007.01820.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, S. M. & Lee, J. W. Computerized occlusal analysis: correlation with occlusal indexes to assess the outcome of orthodontic treatment or the severity of malocculusion. Korean J. Orthod. 46, 27–35 https://doi.org/10.4041/kjod.2016.46.1.27 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiqueto, K. et al. Influence of root parallelism on the stability of extraction-site closures. Am. J. Orthod. Dentofac. Orthop. 139, e505–e510. https://doi.org/10.1016/j.ajodo.2010.11.019 (2011).

    Article 

    Google Scholar
     

  • Wehrbein, H., Bauer, W. & Diedrich, P. Mandibular incisors, alveolar bone, and symphysis after orthodontic treatment. A retrospective study. Am. J. Orthod. Dentofac. Orthop. 110, 239–246. https://doi.org/10.1016/s0889-5406(96)80006-0 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Bouwens, D. G., Cevidanes, L., Ludlow, J. B. & Phillips, C. Comparison of mesiodistal root angulation with posttreatment panoramic radiographs and cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 139, 126–132. https://doi.org/10.1016/j.ajodo.2010.05.016 (2011).

    Article 

    Google Scholar
     

  • Pittayapat, P. et al. Agreement between cone beam computed tomography images and panoramic radiographs for initial orthodontic evaluation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 117, 111–119. https://doi.org/10.1016/j.oooo.2013.10.016 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Hou, D., Capote, R., Bayirli, B., Chan, D. C. N. & Huang, G. The effect of digital diagnostic setups on orthodontic treatment planning. Am. J. Orthod. Dentofac. Orthop. 157, 542–549. https://doi.org/10.1016/j.ajodo.2019.09.008 (2020).

    Article 

    Google Scholar
     

  • Im, J., Cha, J. Y., Lee, K. J., Yu, H. S. & Hwang, C. J. Comparison of virtual and manual tooth setups with digital and plaster models in extraction cases. Am. J. Orthod. Dentofac. Orthop. 145, 434–442. https://doi.org/10.1016/j.ajodo.2013.12.014 (2014).

    Article 

    Google Scholar
     

  • Barreto, M. S., Faber, J., Vogel, C. J. & Araujo, T. M. Reliability of digital orthodontic setups. Angle Orthod. 86, 255–259. https://doi.org/10.2319/120914-890.1 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yoon, J. H. et al. Model analysis of digital models in moderate to severe crowding: In vivo validation and clinical application. Biomed. Res. Int. 2018, 8414605. https://doi.org/10.1155/2018/8414605 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Im, J. et al. Accuracy and efficiency of automatic tooth segmentation in digital dental models using deep learning. Sci. Rep. 12, 9429. https://doi.org/10.1038/s41598-022-13595-2 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, R. J. et al. Three-dimensional monitoring of root movement during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 147, 132–142. https://doi.org/10.1016/j.ajodo.2014.10.010 (2015).

    Article 

    Google Scholar
     

  • Lee, R. J. et al. Three-dimensional evaluation of root position at the reset appointment without radiographs: A proof-of-concept study. Prog. Orthod. 19, 15. https://doi.org/10.1186/s40510-018-0214-4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, R. J. et al. Accuracy and reliability of the expected root position setup methodology to evaluate root position during orthodontic treatment. Am. J. Orthod. Dentofacial Orthop. 154, 583–595. https://doi.org/10.1016/j.ajodo.2018.05.010 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Shin, S.-H., Hyung-Seog, Y., Cha, J.-Y., Kwon, J.-S. & Hwang, C.-J. Scanning accuracy of bracket features and slot base angle in different bracket materials by four intraoral scanners: An in vitro study. Materials 14(2), 365. https://doi.org/10.3390/ma14020365 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hou, Y., Zhao, Y., Wang, Y., Wang, S. & Liu, Y. A pilot study of root position in orthodontic diagnosis model set-up. Zhonghua Kou Qiang Yi Xue Za Zhi 50, 631–635 (2015).

    PubMed 

    Google Scholar
     

  • Mavropoulos, A., Karamouzos, A., Kiliaridis, S. & Papadopoulos, M. A. Efficiency of noncompliance simultaneous first and second upper molar distalization: A three-dimensional tooth movement analysis. Angle Orthod. 75, 532–539. https://doi.org/10.1043/0003-3219(2005)75[532:EONSFA]2.0.CO;2 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Mohamed, R. N., Basha, S. & Al-Thomali, Y. Maxillary molar distalization with miniscrew-supported appliances in Class II malocclusion: A systematic review. Angle Orthod. 88, 494–502. https://doi.org/10.2319/091717-624.1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pham, V. & Lagravère, M. O. Alveolar bone level changes in maxillary expansion treatments assessed through CBCT. Int. Orthod. 15, 103–113. https://doi.org/10.1016/j.ortho.2016.12.002 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Nakada, T., Motoyoshi, M., Horinuki, E. & Shimizu, N. Cone-beam computed tomography evaluation of the association of cortical plate proximity and apical root resorption after orthodontic treatment. J. Oral Sci. 58, 231–236. https://doi.org/10.2334/josnusd.15-0566 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Vardimon, A. D., Oren, E. & Ben-Bassat, Y. Cortical bone remodeling/tooth movement ratio during maxillary incisor retraction with tip versus torque movements. Am. J. Orthod. Dentofac. Orthop. 114, 520–529. https://doi.org/10.1016/s0889-5406(98)70172-6 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Park, G. Posterior anatomic limit for distalization of maxillary dentition (Department of Medicine, Yonsei University, 2020).


    Google Scholar
     

  • Kim, S. J., Choi, T. H., Baik, H. S., Park, Y. C. & Lee, K. J. Mandibular posterior anatomic limit for molar distalization. Am. J. Orthod. Dentofac. Orthop. 146, 190–197. https://doi.org/10.1016/j.ajodo.2014.04.021 (2014).

    Article 

    Google Scholar
     

  • Garib, D. G., Henriques, J. F., Janson, G., de Freitas, M. R. & Fernandes, A. Y. Periodontal effects of rapid maxillary expansion with tooth-tissue-borne and tooth-borne expanders: A computed tomography evaluation. Am. J. Orthod. Dentofac. Orthop. 129, 749–758. https://doi.org/10.1016/j.ajodo.2006.02.021 (2006).

    Article 

    Google Scholar
     

  • Wang, H., Zhao, N., Li, P. & Shen, G. A cone-beam computed tomography analysis of angulation and inclination of whole tooth and clinical crown in adults with normal occlusion. Orthod. Craniofac. Res. 22, 337–344. https://doi.org/10.1111/ocr.12332 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vermylen, K., De Quincey, G. N. T., van Hof, M. A., Wolffe, G. N. & Renggli, H. H. Classification, reproducibility and prevalence of root proximity in periodontal patients. J. Clin. Periodontol. 32(3), 254–259. https://doi.org/10.1111/j.1600-051X.2005.00667.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graber, T. M. Postmortems in posttreatment adjustment. Am. J. Orthod. 52, 331–352. https://doi.org/10.1016/0002-9416(66)90151-5 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edwards, J. G. The prevention of relapse in extraction cases. Am. J. Orthod. 60, 128–144. https://doi.org/10.1016/0002-9416(71)90029-7 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hatasaka, H. H. A radiographic study of roots in extraction sites. Angle Orthod. 46, 64–68. https://doi.org/10.1043/0003-3219(1976)046%3c0064:ARSORI%3e2.0.CO;2 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yeom, H. G. et al. Correlation between spatial resolution and ball distortion rate of panoramic radiography. BMC Med. Imaging 20, 68. https://doi.org/10.1186/s12880-020-00472-5 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lucchesi, M. V., Wood, R. E. & Nortje, C. J. Suitability of the panoramic radiograph for assessment of mesiodistal angulation of teeth in the buccal segments of the mandible. Am. J. Orthod. Dentofac. Orthop. 94, 303–310. https://doi.org/10.1016/0889-5406(88)90055-8 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Garcia-Figueroa, M. A., Raboud, D. W., Lam, E. W., Heo, G. & Major, P. W. Effect of buccolingual root angulation on the mesiodistal angulation shown on panoramic radiographs. Am. J. Orthod. Dentofac. Orthop. 134, 93–99. https://doi.org/10.1016/j.ajodo.2006.07.034 (2008).

    Article 

    Google Scholar
     

  • Tong, H., Enciso, R., Van Elslande, D., Major, P. W. & Sameshima, G. T. A new method to measure mesiodistal angulation and faciolingual inclination of each whole tooth with volumetric cone-beam computed tomography images. Am. J. Orthod. Dentofac. Orthop. 142, 133–143. https://doi.org/10.1016/j.ajodo.2011.12.027 (2012).

    Article 

    Google Scholar
     

  • Lee, W. C. et al. Crown morphology of the mandibular first molars with distolingual roots. J. Dent. Sci. 11, 189–195. https://doi.org/10.1016/j.jds.2015.07.007 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casko, J. S. et al. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am. J. Orthod. Dentofac. Orthop. 114, 589–599. https://doi.org/10.1016/s0889-5406(98)70179-9 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Handelman, C. S. The anterior alveolus: Its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 66, 95–109 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Evangelista, K. et al. Dehiscence and fenestration in patients with Class I and Class II Division 1 malocclusion assessed with cone-beam computed tomography. Am. J. Orthodont. Dentofac. Orthoped. 138(2), 133e1-133e7. https://doi.org/10.1016/j.ajodo.2010.02.021 (2010).

    Article 

    Google Scholar
     

  • Leung, C. C., Palomo, L., Griffith, R. & Hans, M. G. Accuracy and reliability of cone-beam computed tomography for measuring alveolar bone height and detecting bony dehiscences and fenestrations. Am. J. Orthod. Dentofac. Orthop. 137, S109-119. https://doi.org/10.1016/j.ajodo.2009.07.013 (2010).

    Article 

    Google Scholar
     

  • Rupprecht, R. D., Horning, G. M., Nicoll, B. K. & Cohen, M. E. Prevalence of dehiscences and fenestrations in modern American skulls. J. Periodontol. 72, 722–729. https://doi.org/10.1902/jop.2001.72.6.722 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jorgic-Srdjak, K., Plancak, D., Bosnjak, A. & Azinovic, Z. Incidence and distribution of dehiscences and fenestrations on human skulls. Coll. Antropol. 22(Suppl), 111–116 (1998).

    PubMed 

    Google Scholar
     

  • Davies, R. M., Downer, M. C., Hull, P. S. & Lennon, M. A. Alveolar defects in human skulls. J. Clin. Periodontol. 1, 107–111. https://doi.org/10.1111/j.1600-051x.1974.tb01245.x (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Edel, A. Alveolar bone fenestrations and dehiscences in dry Bedouin jaws. J. Clin. Periodontol. 8, 491–499. https://doi.org/10.1111/j.1600-051x.1981.tb00898.x (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, N. et al. Accuracy of in-vitro tooth volumetric measurements from cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 142, 879–887. https://doi.org/10.1016/j.ajodo.2012.05.020 (2012).

    Article 

    Google Scholar
     

  • Liu, Y. et al. The validity of in vivo tooth volume determinations from cone-beam computed tomography. Angle Orthod. 80, 160–166. https://doi.org/10.2319/121608-639.1 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dong, T. et al. Accuracy of in vitro mandibular volumetric measurements from CBCT of different voxel sizes with different segmentation threshold settings. BMC Oral Health 19, 206. https://doi.org/10.1186/s12903-019-0891-5 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, B., Couto Souza, P., Jacobs, R., de Azambuja Berti, S. & van der Stelt, P. Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone beam computed tomography. Clin. Oral Investig. 14, 303–310. https://doi.org/10.1007/s00784-009-0291-3 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Fourie, Z., Damstra, J., Schepers, R. H., Gerrits, P. O. & Ren, Y. Segmentation process significantly influences the accuracy of 3D surface models derived from cone beam computed tomography. Eur. J. Radiol. 81, e524–e530. https://doi.org/10.1016/j.ejrad.2011.06.001 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sathapana, S., Forrest, A., Monsour, P. & Naser-ud-Din, S. Age-related changes in maxillary and mandibular cortical bone thickness in relation to temporary anchorage device placement. Aust. Dent. J. 58, 67–74. https://doi.org/10.1111/adj.12018 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, T., Xu, L., Shi, J. & Zhou, Y. Combined orthodontic-periodontal treatment in periodontal patients with anteriorly displaced incisors. Am. J. Orthod. Dentofac. Orthop. 148, 805–813. https://doi.org/10.1016/j.ajodo.2015.05.026 (2015).

    Article 

    Google Scholar
     

  • Ramos, A. L., Dos Santos, M. C., de Almeida, M. R. & Mir, C. F. Bone dehiscence formation during orthodontic tooth movement through atrophic alveolar ridges. Angle Orthod. 90, 321–329. https://doi.org/10.2319/063019-443.1 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Yagci, A. et al. Dehiscence and fenestration in skeletal Class I, II, and III malocclusions assessed with cone-beam computed tomography. Angle Orthod. 82, 67–74. https://doi.org/10.2319/040811-250.1 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, R. J. et al. Accuracy of the expected root position setup to monitor root angulations and inclinations during orthodontic treatment: A pilot study. J. Indian Orthod. Soc. 52, 44–50. https://doi.org/10.4103/jios.jios_242_17 (2019).

    Article 

    Google Scholar
     

  • Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31, 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. Changes of alveolar bone dehiscence and fenestration after augmented corticotomy-assisted orthodontic treatment: a CBCT evaluation. Prog. Orthod. 20, 7. https://doi.org/10.1186/s40510-019-0259-z (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles