Home Dental Radiology Evaluating the performance of generative adversarial network-synthesized periapical images in classifying C-shaped root canals

Evaluating the performance of generative adversarial network-synthesized periapical images in classifying C-shaped root canals

by adminjay


  • Vertucci, F. J. Root canal morphology and its relationship to endodontic procedures. Endod. Top. 10, 3–29 (2005).

    Article 

    Google Scholar
     

  • Torabinejad, M., Kutsenko, D., Machnick, T. K., Ismail, A. & Newton, C. W. Levels of evidence for the outcome of nonsurgical endodontic treatment. J. Endod. 31, 637–646 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ball, R. L., Barbizam, J. V. & Cohenca, N. Intraoperative endodontic applications of cone-beam computed tomography. J. Endod. 39, 548–557 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Schwendicke, F. A., Samek, W. & Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 99, 769–774 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Singh, N. K. & Raza, K. Progress in deep learning-based dental and maxillofacial image analysis: A systematic review. Expert Syst. Appl. 199, 116968 (2022).

    Article 

    Google Scholar
     

  • Corbella, S., Srinivas, S. & Cabitza, F. Applications of deep learning in dentistry. Oral Med. Oral Pathol. Oral Radiol. 132, 225–238 (2021).

    Article 

    Google Scholar
     

  • Jeon, S.-J. et al. Deep-learning for predicting C-shaped canals in mandibular second molars on panoramic radiographs. Dentomaxillofac. Radiol. 50, 20200513 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sherwood, A. A. et al. A deep learning approach to segment and classify C-shaped canal morphologies in mandibular second molars using cone-beam computed tomography. J. Endod. 47, 1907–1916 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, S. et al. Development and validation of a visually explainable deep learning model for classification of C-shaped canals of the mandibular second molars in periapical and panoramic dental radiographs. J. Endod. 48, 914–921 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Barbedo, J. G. A. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification. Comput. Electron. Agric. 153, 46–53 (2018).

    Article 

    Google Scholar
     

  • Chen, Y. et al. Generative adversarial networks in medical image augmentation: A review. Comput. Biol. Med. 144, 105382 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Xun, S. et al. Generative adversarial networks in medical image segmentation: A review. Comput. Biol. Med. 140, 105063 (2022).

    Article 

    Google Scholar
     

  • Kaji, S. & Kida, S. Overview of image-to-image translation by use of deep neural networks: Denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiol. Phys. Technol. 12, 235–248 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Ahmad, W., Ali, H., Shah, Z. & Azmat, S. A new generative adversarial network for medical images super resolution. Sci. Rep. 12, 9533 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks. Comput. Methods. Programs. Biomed. 224, 107026 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Elazab, A. et al. GP-GAN: Brain tumor growth prediction using stacked 3D generative adversarial networks from longitudinal MR Images. Neural Netw. 132, 321–332 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar
     

  • Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 4401–4410 (2019).

  • Karras, T. et al. Training generative adversarial networks with limited data. Adv. Neural Inf. Process. Syst. 33, 12104–12114 (2020).


    Google Scholar
     

  • Viazovetskyi, Y., Ivashkin, V. & Kashin, E. Stylegan2 distillation for feed-forward image manipulation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII, Vol. 16 170–186 (Springer, 2020).

  • Woodland, M. et al. Evaluating the performance of StyleGAN2-ADA on medical images. In Simulation and Synthesis in Medical Imaging: 7th International Workshop, SASHIMI 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Proceedings 142–153 (Springer, 2022).

  • Hegazy, M. A. A., Cho, M. H. & Lee, S. Y. Image denoising by transfer learning of generative adversarial network for dental CT. Biomed. Phys. Eng. Express. 6, 055024. https://doi.org/10.1088/2057-1976/abb068 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Hegazy, M. A. A., Cho, M. H. & Lee, S. Y. Half-scan artifact correction using generative adversarial network for dental CT. Comput. Biol. Med. 132, 104313. https://doi.org/10.1016/j.compbiomed.2021.104313 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hu, Z. et al. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks. Med. Phys. 46, 1686–1696. https://doi.org/10.1002/mp.13415 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Jiang, C. et al. Wasserstein generative adversarial networks for motion artifact removal in dental CT imaging. In Progress in Biomedical Optics and Imaging—Proceedings of SPIE. SPIE. Vol. 10948 (2019).

  • Khaleghi, G., Hosntalab, M., Sadeghi, M., Reiazi, R. & Mahdavi, S. R. Metal artifact reduction in computed tomography images based on developed generative adversarial neural network. Inform. Med. Unlocked. 24, 100573. https://doi.org/10.1016/j.imu.2021.100573 (2021).

    Article 

    Google Scholar
     

  • Koike, Y. et al. Deep learning-based metal artifact reduction using cycle-consistent adversarial network for intensity-modulated head and neck radiation therapy treatment planning. Phys. Med. 78, 8–14. https://doi.org/10.1016/j.ejmp.2020.08.018 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Moran, M. B. H., Faria, M. D. B., Giraldi, G. A., Bastos, L. F. & Conci, A. Using super-resolution generative adversarial network models and transfer learning to obtain high resolution digital periapical radiographs. Comput. Biol. Med. 129, 104139. https://doi.org/10.1016/j.compbiomed.2020.104139 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Eckl, M. et al. Evaluation of a cycle-generative adversarial network-based cone-beam CT to synthetic CT conversion algorithm for adaptive radiation therapy. Phys. Med. 80, 308–316. https://doi.org/10.1016/j.ejmp.2020.11.007 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Y. et al. Cephalogram synthesis and landmark detection in dental cone-beam CT systems. Med. Image. Anal. 70, 102028. https://doi.org/10.1016/j.media.2021.102028 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lee, C., Ha, E. G., Choi, Y. J., Jeon, K. J. & Han, S. S. Synthesis of T2-weighted images from proton density images using a generative adversarial network in a temporomandibular joint magnetic resonance imaging protocol. Imaging Sci. Dent. 52, 393–398. https://doi.org/10.5624/isd.20220125 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chau, R. C. W., Hsung, R. T., McGrath, C., Pow, E. H. N. & Lam, W. Y. H. Accuracy of artificial intelligence-designed single-molar dental prostheses: A feasibility study. J. Prosthet. Dent. https://doi.org/10.1016/j.prosdent.2022.12.004 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Hierarchical CNN-based occlusal surface morphology analysis for classifying posterior tooth type using augmented images from 3D dental surface models. Comput. Methods Programs Biomed. 208, 106295. https://doi.org/10.1016/j.cmpb.2021.106295 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ding, H. et al. Morphology and mechanical performance of dental crown designed by 3D-DCGAN. Dent. Mater. https://doi.org/10.1016/j.dental.2023.02.001 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Hwang, J.-J., Azernikov, S., Efros, A. A. & Yu, S. X. Learning beyond human expertise with generative models for dental restorations. arXiv preprint arXiv:1804.00064 (2018).

  • Tian, S. et al. A dual discriminator adversarial learning approach for dental occlusal surface reconstruction. J. Healthc. Eng. 2022, 1933617. https://doi.org/10.1155/2022/1933617 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, S. et al. DCPR-GAN: Dental crown prosthesis restoration using two-stage generative adversarial networks. IEEE J. Biomed. Health Inf. 26, 151–160. https://doi.org/10.1109/jbhi.2021.3119394 (2022).

    Article 

    Google Scholar
     

  • Tian, S. et al. Efficient computer-aided design of dental inlay restoration: A deep adversarial framework. IEEE Trans. Med. Imaging. 40, 2415–2427. https://doi.org/10.1109/tmi.2021.3077334 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Yuan, F. et al. Personalized design technique for the dental occlusal surface based on conditional generative adversarial networks. Int. J. Numer. Method Biomed. Eng. 36, e3321. https://doi.org/10.1002/cnm.3321 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kokomoto, K., Okawa, R., Nakano, K. & Nozaki, K. Intraoral image generation by progressive growing of generative adversarial network and evaluation of generated image quality by dentists. Sci. Rep. 11, 18517. https://doi.org/10.1038/s41598-021-98043-3 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, M. et al. Realistic high-resolution lateral cephalometric radiography generated by progressive growing generative adversarial network and quality evaluations. Sci. Rep. 11, 12563. https://doi.org/10.1038/s41598-021-91965-y (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karras, T. et al. Alias-free generative adversarial networks. Adv. Neural Inf. Process. Syst. 34, 852–863 (2021).


    Google Scholar
     

  • Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning 6105–6114 (PMLR, 2019).

  • Manning, S. Root canal anatomy of mandibular second molars: Part II C-shaped canals. Int Endod J. 23, 40–45 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fetty, L. et al. Latent space manipulation for high-resolution medical image synthesis via the StyleGAN. Z. Med. Phys. 30, 305–314 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tronchin, L., Sicilia, R., Cordelli, E., Ramella, S. & Soda, P. Evaluating GANs in medical imaging. In Deep Generative Models, and Data Augmentation, Labelling, and Imperfections: First Workshop, DGM4MICCAI 2021, and First Workshop, DALI 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings, Vol. 1 112–121 (Springer, 2021).

  • Jung, E., Luna, M. & Park, S. H. Conditional GAN with an attention-based generator and a 3D discriminator for 3D medical image generation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI, Vol. 24 318–328 (Springer, 2021).

  • Chen, J., Wei, J. & Li, R. TarGAN: Target-aware generative adversarial networks for multi-modality medical image translation. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part VI, Vol. 24 24–33 (Springer, 2021).

  • Li, C. et al. Interpretable generative adversarial networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36 1280–1288 (2022).

  • Montenegro, H., Silva, W. & Cardoso, J. S. Privacy-preserving generative adversarial network for case-based explainability in medical image analysis. IEEE Access 9, 148037–148047 (2021).

    Article 

    Google Scholar
     

  • You, A., Kim, J. K., Ryu, I. H. & Yoo, T. K. Application of generative adversarial networks (GAN) for ophthalmology image domains: A survey. Eye. Vis. 9, 1–19 (2022).

    Article 

    Google Scholar
     



  • Source link

    Related Articles