Home Orthodontics Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate

Interpretable artificial intelligence for classification of alveolar bone defect in patients with cleft lip and palate

by adminjay


  • WHO Human Genetics Programme. Global strategies to reduce the health-care burden of craniofacial anomalies: Report of WHO meetings on international collaborative research on craniofacial anomalies (World Health Organization, Geneva, 2002).


    Google Scholar
     

  • Bergland, O., Semb, G. & Abyholm, F. E. Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment. Cleft Palate J. 23, 175–205 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • Boyne, P. J. & Sands, N. R. Secondary bone grafting of residual alveolar and palatal clefts. J. Oral Surg. 30, 87–92 (1972).

    CAS 
    PubMed 

    Google Scholar
     

  • da Silva Filho, O. G., Teles, S. G., Ozawa, T. O. & Filho, L. C. Secondary bone graft and eruption of the permanent canine in patients with alveolar clefts: Literature review and case report. Angle Orthod. 70, 174–178. https://doi.org/10.1043/0003-3219(2000)070<0174:SBGAEO>2.0.CO;2 (2000).

  • Ma, L., Hou, Y., Liu, G. & Zhang, T. Effectiveness of presurgical orthodontics in cleft lip and palate patients with alveolar bone grafting: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 122, 13–17. https://doi.org/10.1016/j.jormas.2020.07.010 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chetpakdeechit, W., Pisek, P., Pitiphat, W. & Rattanakanokchai, S. Cleft size and success of secondary alveolar bone grafting—A systematic review. Cleft Palate Craniofac. J. 60, 285–298. https://doi.org/10.1177/10556656211059361 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Enemark, H., Sindet-Pedersen, S., Bundgaard, M. & Simonsen, E. K. Combined orthodontic-surgical treatment of alveolar clefts. Ann. Plast. Surg. 21, 127–133. https://doi.org/10.1097/00000637-198808000-00006 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Newlands, L. C. Secondary alveolar bone grafting in cleft lip and palate patients. Br. J. Oral Maxillofac. Surg. 38, 488–491. https://doi.org/10.1054/bjom.2000.0300 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharma, S., Rao, D. J., Majumder, K. & Jain, H. Secondary alveolar bone grafting: Radiographic and clinical evaluation. Ann. Maxillofac. Surg. 2, 41–45. https://doi.org/10.4103/2231-0746.95316 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linderup, B. W., Kuseler, A., Jensen, J. & Cattaneo, P. M. A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate Craniofac. J. 52, e47-55. https://doi.org/10.1597/13-287 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Shirota, T. et al. Analysis of bone volume using computer simulation system for secondary bone graft in alveolar cleft. Int. J. Oral Maxillofac. Surg. 39, 904–908. https://doi.org/10.1016/j.ijom.2010.04.050 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bradrick, J. P., Smith, A. S., Ohman, J. C. & Indresano, A. T. Estimation of maxillary alveolar cleft volume by three-dimensional CT. J. Comput. Assist. Tomogr. 14, 994–996. https://doi.org/10.1097/00004728-199011000-00025 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Moura, P. M., Hallac, R., Kane, A. & Seaward, J. Improving the evaluation of alveolar bone grafts with cone beam computerized tomography. Cleft Palate Craniofac. J. 53, 57–63. https://doi.org/10.1597/14-304 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Yu, X., Huang, Y. & Li, W. Correlation between alveolar cleft morphology and the outcome of secondary alveolar bone grafting for unilateral cleft lip and palate. BMC Oral Health 22, 251. https://doi.org/10.1186/s12903-022-02265-4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. 3D morphometric quantification of maxillae and defects for patients with unilateral cleft palate via deep learning-based CBCT image auto-segmentation. Orthod. Craniofac. Res. 24(Suppl 2), 108–116. https://doi.org/10.1111/ocr.12482 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al Volumetric registration-based cleft volume estimation of alveolar cleft grafting procedures. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI). 99–103 (2020).

  • Gillot, M. et al. Automatic multi-anatomical skull structure segmentation of cone-beam computed tomography scans using 3D UNETR. PLoS One 17, e0275033. https://doi.org/10.1371/journal.pone.0275033 (2022).

  • Al Turkestani, N. et al. Clinical decision support systems in orthodontics: A narrative review of data science approaches. Orthod. Craniofac. Res. 24 Suppl 2, 26–36. https://doi.org/10.1111/ocr.12492 (2021).

  • Reyes, M. et al. On the interpretability of artificial intelligence in radiology: Challenges and opportunities. Radiol. Artif. Intell. 2, e190043. https://doi.org/10.1148/ryai.2020190043 (2020).

  • Yushkevich, P. A. & Gerig, G. ITK-SNAP: An intractive medical image segmentation tool to meet the need for expert-guided segmentation of complex medical images. IEEE Pulse 8, 54–57. https://doi.org/10.1109/MPUL.2017.2701493 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Slicer 3D. https://download.slicer.org. Accessed 27 Mar 2023 (2023).

  • Ruellas, A. C. et al. Common 3-dimensional coordinate system for assessment of directional changes. Am. J. Orthod. Dentofac. Orthop. 149, 645–656. https://doi.org/10.1016/j.ajodo.2015.10.021 (2016).

    Article 

    Google Scholar
     

  • Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Su, H., Maji, S., Kalogerakis, E. & Learned-Miller, E. Multi-view convolutional neural networks for 3D shape recognition. In 2015 IEEE International Conference on Computer Vision (ICCV). 945–953 (IEEE Computer Society, 2015).

  • Boumbolo, L. et al. FlyBy CNN: A 3D surface segmentation framework. Proc. SPIE Int. Soc. Opt. Eng. https://doi.org/10.1117/12.2582205 (2021).

  • Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K. & Bengio, Y. Attention-based models for speech recognition. Adv. Neural Inf. Process. Syst. 28, 15 (2015).

  • Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128, 336–359. https://doi.org/10.1007/s11263-019-01228-7 (2020).

    Article 

    Google Scholar
     

  • Adadi, A. & Berrada, M. Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052 (2018).

    Article 

    Google Scholar
     

  • Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 116, 22071–22080. https://doi.org/10.1073/pnas.1900654116 (2019).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • van der Velden, B. H. M., Kuijf, H. J., Gilhuijs, K. G. A. & Viergever, M. A. Explainable artificial intelligence (XAI) in deep learning-based medical image analysis. Med. Image Anal. 79, 102470. https://doi.org/10.1016/j.media.2022.102470 (2022).

  • Petsiuk, V., Das, A. & Saenko, K. Rise: Randomized input sampling for explanation of black-box models. arXiv preprint arXiv:1806.07421 (2018).

  • Chattopadhay, A., Sarkar, A., Howlader, P. & Balasubramanian, V. N. Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 839–847 (2018).

  • Ivanovs, M., Kadikis, R. & Ozols, K. Perturbation-based methods for explaining deep neural networks: A survey. Pattern Recogn. Lett. 150, 228–234. https://doi.org/10.1016/j.patrec.2021.06.030 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Bianchi, J. et al. Three-dimensional digital applications for implant space planning in orthodontics: A narrative review. J. World Fed. Orthod. 11, 207–215. https://doi.org/10.1016/j.ejwf.2022.10.006 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Firestone, A. R., Sema, D., Heaven, T. J. & Weems, R. A. The effect of a knowledge-based, image analysis and clinical decision support system on observer performance in the diagnosis of approximal caries from radiographic images. Caries Res. 32, 127–134. https://doi.org/10.1159/000016442 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huqh, M. Z. U. et al. Clinical applications of artificial intelligence and machine learning in children with cleft lip and palate—A systematic review. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph191710860 (2022).

  • Yagi, M., Ohno, H. & Takada, K. Decision-making system for orthodontic treatment planning based on direct implementation of expertise knowledge. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2894–2897, 2010. https://doi.org/10.1109/IEMBS.2010.5626317 (2010).

    Article 

    Google Scholar
     

  • Concato, J. et al. Observational methods in comparative effectiveness research. Am. J. Med. 123, e16-23. https://doi.org/10.1016/j.amjmed.2010.10.004 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Keener, D. J. et al. Three-dimensional decision support system for treatment of canine impaction. Am. J. Orthod. Dentofac. Orthop. https://doi.org/10.1016/j.ajodo.2023.02.016 (2023).

    Article 

    Google Scholar
     

  • Thurzo, A., Urbanová, W., Neuschlová, I., Paouris, D. & Čverha, M. Use of optical scanning and 3D printing to fabricate customized appliances for patients with craniofacial disorders. Semin. Orthod. 28, 92–99. https://doi.org/10.1053/j.sodo.2022.10.005 (2022).

    Article 

    Google Scholar
     



  • Source link

    Related Articles