Home Orthodontics Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients

Development of novel artificial intelligence systems to predict facial morphology after orthognathic surgery and orthodontic treatment in Japanese patients

by adminjay


  • 1.

    Proffit, W. R. & Fields, H. W. Contemporary Orthodontics 3rd edn. (Mosby, 2000).


    Google Scholar
     

  • 2.

    Chaconas, S. J. & Bartroff, J. D. Prediction of normal soft tissue facial changes. Angle Orthod. 45, 12–25. https://doi.org/10.1043/0003-3219(1975)045%3c0012:PONSTF%3e2.0.CO;2 (1975).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 3.

    Drobocky, O. B. & Smith, R. J. Changes in facial profile during orthodontic treatment with extraction of four first premolars. Am. J. Orthod. Dentofacial. Orthop. 95, 220–230. https://doi.org/10.1016/0889-5406(89)90052-8 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Diels, R. M., Kalra, V., DeLoach, N. Jr., Powers, M. & Nelson, S. S. Changes in soft tissue profile of African-Americans following extraction treatment. Angle Orthod. 65, 285–292. https://doi.org/10.1043/0003-3219(1995)065%3c0285:CISTPO%3e2.0.CO;2 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Yogosawa, F. Predicting soft tissue profile changes concurrent with orthodontic treatment. Angle Orthod. 60, 199–206. https://doi.org/10.1043/0003-3219(1990)060%3c0199:PSTPCC%3e2.0.CO;2 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Tan, T. J. Profile changes following orthodontic correction of bimaxillary protrusion with a preadjusted edgewise appliance. Int. J. Adult Orthodon. Orthognath. Surg. 11, 239–251 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Saelens, N. A. & De Smit, A. A. Therapeutic changes in extraction versus non-extraction orthodontic treatment. Eur. J. Orthod. 20, 225–236. https://doi.org/10.1093/ejo/20.3.225 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Ismail, S. F., Moss, J. P. & Hennessy, R. Three-dimensional assessment of the effects of extraction and nonextraction orthodontic treatment on the face. Am. J. Orthod. Dentofac. Orthop. 121, 244–256. https://doi.org/10.1067/mod.2002.121010 (2002).

    Article 

    Google Scholar
     

  • 9.

    Basciftci, F. A., Uysal, T., Buyukerkmen, A. & Demir, A. The influence of extraction treatment on Holdaway soft-tissue measurements. Angle Orthod. 74, 167–173. https://doi.org/10.1043/0003-3219(2004)074%3c0167:TIOETO%3e2.0.CO;2 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 10.

    Erdinc, A. E., Nanda, R. S. & Dandajena, T. C. Profile changes of patients treated with and without premolar extractions. Am. J. Orthod. Dentofac. Orthop. 132, 324–331. https://doi.org/10.1016/j.ajodo.2005.08.045 (2007).

    Article 

    Google Scholar
     

  • 11.

    Freitas, B. V., Rodrigues, V. P., Rodrigues, M. F., de Melo, H. V. F. & Dos Santos, P. C. F. Soft tissue facial profile changes after orthodontic treatment with or without tooth extractions in Class I malocclusion patients: A comparative study. J. Oral Biol. Craniofac. Res. 9, 172–176. https://doi.org/10.1016/j.jobcr.2018.07.003 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Young, T. M. & Smith, R. J. Effects of orthodontics on the facial profile: A comparison of changes during nonextraction and four premolar extraction treatment. Am. J. Orthod. Dentofac. Orthop. 103, 452–458. https://doi.org/10.1016/S0889-5406(05)81796-2 (1993).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Kolokitha, O. E., Athanasiou, A. E. & Tuncay, O. C. Validity of computerized predictions of dentoskeletal and soft tissue profile changes after mandibular setback and maxillary impaction osteotomies. Int. J. Adult Orthodon. Orthognath. Surg. 11, 137–154 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Tsang, S. T., McFadden, L. R., Wiltshire, W. A., Pershad, N. & Baker, A. B. Profile changes in orthodontic patients treated with mandibular advancement surgery. Am. J. Orthod. Dentofac. Orthop. 135, 66–72. https://doi.org/10.1016/j.ajodo.2007.01.033 (2009).

    Article 

    Google Scholar
     

  • 15.

    Betts, N. J. & Dowd, K. F. Soft tissue changes associated with orthognathic surgery. Atlas Oral Maxillofac. Surg. Clin. N. Am. 8, 13–38 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Cozza, P., De Toffol, L. & Colagrossi, S. Dentoskeletal effects and facial profile changes during activator therapy. Eur. J. Orthod. 26, 293–302. https://doi.org/10.1093/ejo/26.3.293 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Idris, G., Hajeer, M. Y. & Al-Jundi, A. Soft- and hard-tissue changes following treatment of Class II division 1 malocclusion with Activator versus Trainer: A randomized controlled trial. Eur. J. Orthod. 41, 21–28. https://doi.org/10.1093/ejo/cjy014 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Kilic, N., Celikoglu, M. & Oktay, H. Effects of the functional regulator III on profile changes in subjects with maxillary deficiency. Eur. J. Orthod. 32, 729–734. https://doi.org/10.1093/ejo/cjq011 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • 19.

    Talass, M. F., Talass, L. & Baker, R. C. Soft-tissue profile changes resulting from retraction of maxillary incisors. Am. J. Orthod. Dentofac. Orthop. 91, 385–394. https://doi.org/10.1016/0889-5406(87)90391-x (1987).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Battagel, J. M. The relationship between hard and soft tissue changes following treatment of Class II division 1 malocclusions using Edgewise and Frankel appliance techniques. Eur. J. Orthod. 12, 154–165. https://doi.org/10.1093/ejo/12.2.154 (1990).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 21.

    Jin, S. C., Kasai, K., Iwasawa, T. & Kanazawa, E. Lip form responses to changes in maxillary incisor position. J. Nihon Univ. Sch. Dent. 38, 146–154. https://doi.org/10.2334/josnusd1959.38.146 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Konstiantos, K. A., O’Reilly, M. T. & Close, J. The validity of the prediction of Soft Tissue profile changes after LeFort I osteotomy using the dentofacial planner (computer software). Am. J. Orthod. Dentofac. Orthop. 105, 241–249. https://doi.org/10.1016/S0889-5406(94)70117-2 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Peterman, R. J., Jiang, S., Johe, R. & Mukherjee, P. M. Accuracy of Dolphin visual treatment objective (VTO) prediction software on class III patients treated with maxillary advancement and mandibular setback. Prog. Orthod. 17, 19. https://doi.org/10.1186/s40510-016-0132-2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kaipatur, N. R. & Flores-Mir, C. Accuracy of computer programs in predicting orthognathic surgery soft tissue response. J. Oral Maxillofac. Surg. 67, 751–759. https://doi.org/10.1016/j.joms.2008.11.006 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 25.

    Smith, J. D., Thomas, P. M. & Proffit, W. R. A comparison of current prediction imaging programs. Am. J. Orthod. Dentofac. Orthop. 125, 527–536. https://doi.org/10.1016/S0889540604001210 (2004).

    Article 

    Google Scholar
     

  • 26.

    Zhang, X. et al. Accuracy of computer-aided prediction in soft tissue changes after orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 156, 823–831. https://doi.org/10.1016/j.ajodo.2018.11.021 (2019).

    Article 

    Google Scholar
     

  • 27.

    Kuijpers, M. A., Chiu, Y. T., Nada, R. M., Carels, C. E. & Fudalej, P. S. Three-dimensional imaging methods for quantitative analysis of facial soft tissues and skeletal morphology in patients with orofacial clefts: a systematic review. PLoS ONE 9, e93442. https://doi.org/10.1371/journal.pone.0093442 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Metzler, P. et al. Validity of the 3D VECTRA photogrammetric surface imaging system for cranio-maxillofacial anthropometric measurements. Oral Maxillofac. Surg. 18, 297–304. https://doi.org/10.1007/s10006-013-0404-7 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • 29.

    Tanikawa, C., Akcam, M. O. & Takada, K. Quantifying faces three-dimensionally in orthodontic practice. J. Cranio Maxill Surg. 47, 867–875. https://doi.org/10.1016/j.jcms.2019.02.012 (2019).

    Article 

    Google Scholar
     

  • 30.

    Tanikawa, C. et al. Functional decline in facial expression generation in older women: A cross-sectional study using three-dimensional morphometry. PLoS ONE 14, e0219451. https://doi.org/10.1371/journal.pone.0219451 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Tanikawa, C. Facial morphospace: A clinical quantitative analysis of the three-dimensional face in patients with cleft lip and palate. Plast. Aesthet. Res. 7, 48. https://doi.org/10.20517/2347-9264.2020.136 (2020).

    Article 

    Google Scholar
     

  • 32.

    Resnick, C. M., Dang, R. R., Glick, S. J. & Padwa, B. L. Accuracy of three-dimensional soft tissue prediction for Le Fort I osteotomy using Dolphin 3D software: A pilot study. Int. J. Oral Maxillofac. Surg. 46, 289–295. https://doi.org/10.1016/j.ijom.2016.10.016 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Elshebiny, T., Morcos, S., Mohammad, A., Quereshy, F. & Valiathan, M. Accuracy of three-dimensional soft tissue prediction in orthognathic cases using dolphin three-dimensional software. J. Craniofac. Surg. 30, 525–528. https://doi.org/10.1097/SCS.0000000000005037 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • 34.

    Bookstein, F. L. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Med. Image Anal. 1, 225–243. https://doi.org/10.1016/s1361-8415(97)85012-8 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 35.

    Schendel, S. A., Jacobson, R. & Khalessi, S. 3-Dimensional facial simulation in orthognathic surgery: Is it accurate?. J. Oral Maxillofac. Surg. 71, 1406–1414. https://doi.org/10.1016/j.joms.2013.02.010 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • 36.

    Ullah, R., Turner, P. J. & Khambay, B. S. Accuracy of three-dimensional soft tissue predictions in orthognathic surgery after Le Fort I advancement osteotomies. Br. J. Oral Maxillofac. Surg. 53, 153–157. https://doi.org/10.1016/j.bjoms.2014.11.001 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 37.

    Nkenke, E. et al. Three-dimensional analysis of changes of the malar-midfacial region after LeFort I osteotomy and maxillary advancement. Oral Maxillofac. Surg. 12, 5–12. https://doi.org/10.1007/s10006-008-0094-8 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Mankad, B., Cisneros, G. J., Freeman, K. & Eisig, S. B. Prediction accuracy of soft tissue profile in orthognathic surgery. Int. J. Adult Orthodon. Orthognath. Surg. 14, 19–26 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Chew, M. T., Sandham, A. & Wong, H. B. Evaluation of the linearity of soft- to hard-tissue movement after orthognathic surgery. Am. J. Orthod. Dentofac. Orthop. 134, 665–670. https://doi.org/10.1016/j.ajodo.2006.12.017 (2008).

    Article 

    Google Scholar
     

  • 40.

    Wang, S. & Yang, J. An improved finite element model for craniofacial surgery simulation. Int. J. Comput. Assist. Radiol. Surg. 4, 579–587. https://doi.org/10.1007/s11548-009-0373-3 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • 41.

    Kim, H., Jurgens, P., Nolte, L. P. & Reyes, M. Anatomically-driven soft-tissue simulation strategy for cranio-maxillofacial surgery using facial muscle template model. Lect. Notes Comput. Sci. 6361, 61 (2010).

    Article 

    Google Scholar
     

  • 42.

    Oliver, B. M. The influence of lip thickness and strain on upper lip response to incisor retraction. Am. J. Orthod. 82, 141–149. https://doi.org/10.1016/0002-9416(82)90492-4 (1982).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Farkas, L. G. Anthropometry of the Head and Face (Raven Press, 1994).


    Google Scholar
     

  • 44.

    Tanikawa, C., Zere, E. & Takada, K. Sexual dimorphism in the facial morphology of adult humans: A three-dimensional analysis. Homo 67, 23–49. https://doi.org/10.1016/j.jchb.2015.10.001 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Kono, K., Tanikawa, C., Yanagita, T., Kamioka, H. & Yamashiro, T. A novel method to detect 3D mandibular changes related to soft-diet feeding. Front. Physiol. 8, 567. https://doi.org/10.3389/fphys.2017.00567 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles