Home Dental Radiology Validation of bone mineral density measurement using quantitative CBCT image based on deep learning

Validation of bone mineral density measurement using quantitative CBCT image based on deep learning

by adminjay


  • Shin, S. The trend of National Health Insurance dental treatment in the last 10 years. Policy Trends 14(6), 70–84 (2020).


    Google Scholar
     

  • Agari, K. & Le, B. Successive reimplantation of dental implants into sites of previous failure. J. Oral Maxillofac. Surg. 78(3), 375–385 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Zhao, C.-R., Cho, I.-H. & Moon, E.-S. A retrospective statistical analysis of dental implants. J. Korean Acad. Prosthodont. 47(3), 266–272 (2009).

    Article 

    Google Scholar
     

  • Jang, H. W. et al. A retrospective study on related factors affecting the survival rate of dental implants. J. Adv. Prosthodont. 3(4), 204–215 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauwels, R. et al. CBCT-based bone quality assessment: Are Hounsfield units applicable?. Dentomaxillofac. Radiol. 44(1), 20140238 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Oliveira, R. C. et al. Assessments of trabecular bone density at implant sites on CT images. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 105(2), 231–238 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Resnik, R. R. Misch’s Contemporary Implant Dentistry 4th edn. (Elsevier, 2021).


    Google Scholar
     

  • Kim, D. S. et al. Comparison of dental implant stabilities by impact response and resonance frequencies using artificial bone. Med. Eng. Phys. 36(6), 715–720 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Cha, J. Y. et al. Miniscrew stability evaluated with computerized tomography scanning. Am. J. Orthod. Dentofac. Orthop. 137(1), 73–79 (2010).

    Article 

    Google Scholar
     

  • Almasoud, N. N., Tanneru, N. & Marei, H. F. Alveolar bone density and its clinical implication in the placement of dental implants and orthodontic mini-implants. Saudi Med. J. 37(6), 684–689 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 11(5), 491–501 (1998).

  • Kim, T.-H., Lee, D.-Y. & Jung, S.-K. Comparison of trabecular bone mineral density measurement using Hounsfield unit and trabecular microstructure in orthodontic patients using cone-beam computed tomography. Appl. Sci. 11(3), 1028 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Patil, S. M. et al. Assessment of maxillary and mandibular bone mineral density in controlled Type II diabetes in completely edentulous patients using cone-beam computed tomography—A cross sectional study with comparison group. Open J. Stomatol. 11(10), 422–436 (2021).

    Article 

    Google Scholar
     

  • Molly, L. Bone density and primary stability in implant therapy. Clin. Oral Implants Res. 17(S2), 124–135 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Compston, J. Bone quality: What is it and how is it measured?. Arquivos Brasileiros de Endocrinologia & Metabologia 50, 579–585 (2006).

    Article 

    Google Scholar
     

  • Misch, C. E., Qu, Z. & Bidez, M. W. Mechanical properties of trabecular bone in the human mandible: Implications for dental implant treatment planning and surgical placement. J. Oral Maxillofac. Surg. 57(6), 700–706 (1999) (discussion 706-8).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donnelly, E. Methods for assessing bone quality: A review. Clin. Orthop. Relat. Res. 469(8), 2128–2138 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Swami, V., Vijayaraghavan, V. & Swami, V. Current trends to measure implant stability. J. Indian Prosthodont. Soc. 16(2), 124–130 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, D. G. Can dental cone beam computed tomography assess bone mineral density?. J. Bone Metab. 21(2), 117–126 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamburoglu, K. Use of dentomaxillofacial cone beam computed tomography in dentistry. World J. Radiol. 7(6), 128–130 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalessandri, D. et al. Advantages of cone beam computed tomography (CBCT) in the orthodontic treatment planning of cleidocranial dysplasia patients: A case report. Head Face Med. 7(1), 6 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapila, S. D. & Nervina, J. M. CBCT in orthodontics: Assessment of treatment outcomes and indications for its use. Dentomaxillofac. Radiol. 44(1), 20140282 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De Vos, W., Casselman, J. & Swennen, G. R. Cone-beam computerized tomography (CBCT) imaging of the oral and maxillofacial region: A systematic review of the literature. Int. J. Oral Maxillofac. Surg. 38(6), 609–625 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. H. et al. Extraction sockets: Erratic healing impeding factors. J. Clin. Periodontol. 41(1), 80–85 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Hohlweg-Majert, B. et al. Morphometric analysis–cone beam computed tomography to predict bone quality and quantity. J. Cranio-Maxillofac. Surg. 39(5), 330–334 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lechuga, L. & Weidlich, G. A. Cone beam CT vs. fan beam CT: A comparison of image quality and dose delivered between two differing CT imaging modalities. Cureus 8(9), e778 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiljunen, T. et al. Dental cone beam CT: A review. Phys. Med. 31(8), 844–860 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Woelber, J. P. et al. Accuracy and usefulness of CBCT in periodontology: A systematic review of the literature. Int. J. Periodont. Restor. Dent. 38(2), 289–297 (2018).

    Article 

    Google Scholar
     

  • Cann, C. E. Quantitative CT for determination of bone mineral density: A review. Radiology 166(2), 509–522 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schulze, R. et al. Artefacts in CBCT: A review. Dentomaxillofac. Radiol. 40(5), 265–273 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, I. M. et al. Bone density: Comparative evaluation of Hounsfield units in multislice and cone-beam computed tomography. Braz. Oral Res. 26(6), 550–556 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Schreiber, J. J., Anderson, P. A. & Hsu, W. K. Use of computed tomography for assessing bone mineral density. Neurosurg. Focus 37(1), E4 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Faulkner, K. G. et al. Cross-calibration of liquid and solid QCT calibration standards: Corrections to the UCSF normative data. Osteoporos. Int. 3(1), 36–42 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barrett, J. F. & Keat, N. Artifacts in CT: Recognition and avoidance. Radiographics 24(6), 1679–1691 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Dale, A. M. & Robert, A. D. A clinician’s guide to understanding cone beam volumetric imaging (CBVI). Dent. Econ. 97(8), S1 (2007).


    Google Scholar
     

  • Wang, T. & Zhu, L. Image-Domain Non-uniformity Correction for Cone-beam CT 680–683 (IEEE, 2017).


    Google Scholar
     

  • Terrabuio, B. R. et al. Cone-beam computed tomography artifacts in the presence of dental implants and associated factors: An integrative review. Imaging Sci. Dent. 51(2), 93 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsa, A. et al. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment. Int. J. Oral Maxillofac. Implants 27(6), 1438–1442 (2012).

    PubMed 

    Google Scholar
     

  • Katsumata, A. et al. Relationship between density variability and imaging volume size in cone-beam computerized tomographic scanning of the maxillofacial region: An in vitro study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107(3), 420–425 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pauwels, R. et al. Development and applicability of a quality control phantom for dental cone-beam CT. J. Appl. Clin. Med. Phys. 12(4), 245–260 (2011).

    Article 
    PubMed Central 

    Google Scholar
     

  • Oliveira, M. et al. Influence of exposure factors on the variability of CBCT voxel values: A phantom study. Dentomaxillofac. Radiol. 43(6), 20140128 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Molteni, R. Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 116(1), 105–119 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Nackaerts, O. et al. Analysis of intensity variability in multislice and cone beam computed tomography. Clin. Oral Implant Res. 22(8), 873–879 (2011).

    Article 

    Google Scholar
     

  • Nomura, Y. et al. Stability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral content. Clin. Oral Implant Res. 24(5), 543–548 (2013).

    Article 

    Google Scholar
     

  • Nishino, K. et al. Influence of an object’s z-axis location and location on the axial plane on the voxel value representation and uniformity in cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 118(5), 619–624 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Pauwels, R. CBCT Quality Assurance. In Maxillofacial Cone Beam Computed Tomography 213–226 (Springer, 2018).

    Chapter 

    Google Scholar
     

  • Razi, T., Niknami, M. & AlaviGhazani, F. Relationship between Hounsfield unit in CT scan and gray scale in CBCT. J. Dent. Res. Dent. Clin. Dent. Prospects 8(2), 107–110 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parsa, A. et al. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT. Clin. Oral Implants Res. 26(1), e1-7 (2015).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Li, Y., Garrett, J. & Chen, G. H. Reduction of beam hardening artifacts in cone-beam CT imaging via SMART-RECON algorithm. In Proc SPIE Int Soc Opt Eng, vol. 9783 (2016).

  • Bechara, B. B. et al. Metal artefact reduction with cone beam CT: An in vitro study. Dentomaxillofac. Radiol. 41(3), 248–253 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elstrom, U. V. et al. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol. 50(6), 908–917 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, L. et al. Scatter correction for cone-beam CT in radiation therapy. Med. Phys. 36(6), 2258–2268 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genant, H. K. & Jiang, Y. Advanced imaging assessment of bone quality. Ann. N. Y. Acad. Sci. 1068(1), 410–428 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Song, Y.-D., Jun, S.-H. & Kwon, J.-J. Correlation between bone quality evaluated by cone-beam computerized tomography and implant primary stability. Int. J. Oral Maxillofac. Implants 24(1), 59–64 (2009).

    PubMed 

    Google Scholar
     

  • Rebaudi, A. et al. Preoperative evaluation of bone quality and bone density using a novel CT/microCT-based hard-normal-soft classification system. Int. J. Oral Maxillofac. Implants 25(1), 75–85 (2010).

    PubMed 

    Google Scholar
     

  • Mah, P., Reeves, T. E. & McDavid, W. D. Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac. Radiol. 39(6), 323–335 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reeves, T. E., Mah, P. & McDavid, W. D. Deriving Hounsfield units using grey levels in cone beam CT: A clinical application. Dentomaxillofac. Radiol. 41(6), 500–508 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Q. et al. Quantitative cone-beam CT of bone mineral density using model-based reconstruction. In Proc SPIE Int Soc Opt Eng, vol. 10948 (2019).

  • Nomura, Y. et al. Reliability of voxel values from cone-beam computed tomography for dental use in evaluating bone mineral density. Clin. Oral Implants Res. 21(5), 558–562 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Naitoh, M. et al. Evaluation of voxel values in mandibular cancellous bone: Relationship between cone-beam computed tomography and multislice helical computed tomography. Clin. Oral Implants Res. 20(5), 503–506 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • He, K. et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016).

  • Kim, H. G. et al. Improvement diagnostic accuracy of sinusitis recognition in paranasal sinus X-ray using multiple deep learning models. Quant. Imaging Med. Surg. 9(6), 942–951 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shahidi, S. et al. Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac. Radiol. 42(1), 20110187–20110187 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yi, X., Walia, E. & Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 58, 101552 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Yi, X. & Babyn, P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J. Digit. Imaging 31(5), 655–669 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harms, J. et al. Paired cycle-GAN-based image correction for quantitative cone-beam computed tomography. Med. Phys. 46(9), 3998–4009 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. Improving CBCT quality to CT level using deep learning with generative adversarial network. Med. Phys. 48(6), 2816–2826 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Huang, Z. et al. CaGAN: A cycle-consistent generative adversarial network with attention for low-dose CT imaging. IEEE Trans. Comput. Imaging 6, 1203–1218 (2020).

    Article 
    MathSciNet 

    Google Scholar
     

  • Xu, T. et al. Attngan: Fine-grained text to image generation with attentional generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018).

  • Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).

  • Zhu, J.-Y. et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision (2017).

  • Kida, S. et al. Cone beam computed tomography image quality improvement using a deep convolutional neural network. Cureus 10(4), e2548 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, L. et al. Synthetic CT generation from CBCT images via deep learning. Med. Phys. 47(3), 1115–1125 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, J. et al. U-gat-it: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. arXiv preprint arXiv:1907.10830, 2019.

  • Andersson, J., Ahlstrom, H. & Kullberg, J. Separation of water and fat signal in whole-body gradient echo scans using convolutional neural networks. Magn. Reason. Med. 82(3), 1177–1186 (2019).

    Article 

    Google Scholar
     

  • Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, 2015).

  • Yong, T. H. et al. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: A human skull phantom study. Sci. Rep. 11(1), 15083 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pak, S.-I. & Oh, T.-H. Statistical test of agreement between measurements in method-comparison study. J. Vet. Clin. 28(1), 108–112 (2011).


    Google Scholar
     

  • Bamba, J. et al. Image quality assessment of three cone beam CT machines using the SEDENTEXCT CT phantom. Dentomaxillofac. Radiol. 42(8), 20120445 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsumata, A. et al. Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 104(6), 829–836 (2007).

    Article 

    Google Scholar
     

  • Naitoh, M. et al. Stability of voxel values in cone-beam computed tomography. Oral Radiol. 30(2), 147–152 (2014).

    Article 

    Google Scholar
     

  • Plachtovics, M. et al. High-quality image acquisition by double exposure overlap in cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 117(6), 760–767 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Kim, D.-S. et al. A new method for the evaluation of dental implant stability using an inductive sensor. Med. Eng. Phys. 34(9), 1247–1252 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Sennerby, L. et al. Evaluation of a novel cone beam computed tomography scanner for bone density examinations in preoperative 3D reconstructions and correlation with primary implant stability. Clin. Implant Dent. Relat. Res. 17(5), 844–853 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Monje, A. et al. Relationship between primary/mechanical and secondary/biological implant stability. Int. J. Oral Maxillofac. Implants 34, s7–s23 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. Mitigating bias in radiology machine learning: 2. Model development. Radiol. Artif. Intell. 4(5), e220010 (2022).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. H. et al. A fully automated method of human identification based on dental panoramic radiographs using a convolutional neural network. Dentomaxillofac. Radiol. 51(4), 20210383 (2022).

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles