Home Dental Radiology Diagnostic performance of convolutional neural networks for dental sexual dimorphism

Diagnostic performance of convolutional neural networks for dental sexual dimorphism

by adminjay


  • Kafadar, K. The need for objective measures in forensic evidence. Significance 16, 16–20. https://doi.org/10.1111/j.1740-9713.2019.01249.x (2019).

    Article 

    Google Scholar
     

  • Pretty, I. & Sweet, D. The scientific basis for human bitemark analyses—A critical review. Sci. Justice 41, 8592. https://doi.org/10.1016/S1355-0306(01)71859-X (2001).

    Article 

    Google Scholar
     

  • Franco, A. et al. Feasibility and validation of virtual autopsy for dental identification using the Interpol dental codes. J. Forensic Leg. Med. 20, 248–254. https://doi.org/10.1016/j.jflm.2012.09.021 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Franco, A., Orestes, S. G. F., Coimbra, E. F., Thevissen, P. & Fernandes, A. Comparing dental identifier charting in cone beam computed tomography scans and panoramic radiographs using Interpol coding for human identification. Forensic Sci. Int. 302, 109860. https://doi.org/10.1016/j.forsciint.2019.06.018 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Angelakopoulos, N., Franco, A., Willems, G., Fieuws, S. & Thevissen, P. Clinically detectable dental identifiers observed in intra-oral photographs and extra-oral radiographs, validated for human identification purposes. J. Forensic Sci. 62, 900–906. https://doi.org/10.1111/1556-4029.13310 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Thevissen, P., Fieuws, S. & Willems, G. Third molar development: measurements versus scores as age predictor. Arch. Oral Biol. 56, 1035–1040. https://doi.org/10.1016/j.archoralbio.2011.04.008 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Franco, A., Vetter, F., Coimbra, E. F., Fernandes, Â. & Thevissen, P. Comparing third molar root development staging in panoramic radiography, extracted teeth and cone beam computed tomography. Int. J. Legal Med. 134, 347–353. https://doi.org/10.1007/s00414-019-02206-x (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Franco, A., Thevissen, P., Fieuws, S., Souza, P. H. C. & Willems, G. Applicability of Willems model for dental age estimations in Brazilian children. Forensic Sci. Int. 231, 401-e1. https://doi.org/10.1016/j.forsciint.2013.05.030 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Sartori, V. et al. Testing international techniques for the radiographic assessment of third molar maturation. J. Clin. Exp. Dent. 13, e1182. https://doi.org/10.4317/jced.58916 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gelbrich, B., Carl, C. & Gelbrich, G. Comparison of three methods to estimate dental age in children. Clin. Oral Invest. 24, 2469–2475. https://doi.org/10.1007/s00784-019-03109-2 (2020).

    Article 

    Google Scholar
     

  • KMD PlassData DVI. Computerized identification of disaster victims and missing persons. http://kmd.net/solutions-and-services/solutions/kmd-plassdata-dvi

  • Banar, N. et al. Towards fully automated third molar development staging in panoramic radiographs. Int. J. Leg. Med. 134, 1831–1841. https://doi.org/10.1007/s00414-020-02283-3 (2020).

    Article 

    Google Scholar
     

  • Krishan, K. et al. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci. Int. 261, 165-e1. https://doi.org/10.1016/j.forsciint.2016.02.007 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • De Boer, H. H., Blau, S., Delabarde, T. & Hackman, L. The role of forensic anthropology in disaster victim identification (DVI): Recent developments and future prospects. Forensic. Sci. Res. 4, 303–315. https://doi.org/10.1080/20961790.2018.1480460 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Capitaneanu, C., Willems, G. & Thevissen, P. A systematic review of odontological sex estimation methods. J. Forensic Odonto-Stomatol. 35, 1 (2017).

    CAS 

    Google Scholar
     

  • Rocha, M. F. N., Pinto, P. H. V., Franco, A. & da Silva, R. H. A. Applicability of the mandibular canine index for sex estimation: A systematic review. Egypt. J. Forensic Sci. 12, 1–18. https://doi.org/10.1186/s41935-022-00270-w (2022).

    Article 

    Google Scholar
     

  • Suthaharan, S. Machine Learning Models and Algorithms for Big Data Classification: Thinking with Examples for Effective Learning (Springer Publ. Inc., Boston, 2015).

    MATH 

    Google Scholar
     

  • Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013 (2015).

    ADS 
    Article 

    Google Scholar
     

  • Khan, A., Sohail, A., Zahoora, U. & Qureshi, A. S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 5455–5516. https://doi.org/10.1007/s10462-020-09825-6 (2020).

    Article 

    Google Scholar
     

  • Sun, Y., Xue, B., Zhang, M. & Yen, G. G. Evolving deep convolutional neural networks for image classification. IEEE Transact. Evol. Comput. 24, 394–407. https://doi.org/10.1109/TEVC.2019.2916183 (2020).

    Article 

    Google Scholar
     

  • Alzubaidi, L. et al. Review of deep learning: concepts, cnn architectures, challenges, applications, future directions. J. Big Data 8, 53. https://doi.org/10.1186/s40537-021-00444-8 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farias Gomes, A. et al. Development and validation of a formula based on maxillary sinus measurements as a tool for sex estimation: A cone beam computed tomography study. Int. J. Leg. Med. 133, 1241–1249. https://doi.org/10.1007/s00414-018-1869-6 (2019).

    Article 

    Google Scholar
     

  • V7 Labs. Darwin Auto-Annotate (2022). https://www.v7labs.com/

  • Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Transact. Knowl. Data Eng. 22, 1345–1359. https://doi.org/10.1109/TKDE.2009.191 (2010).

    Article 

    Google Scholar
     

  • Shao, L., Zhu, F. & Li, X. Transfer learning for visual categorization: A survey. IEEE Transact. Neural Netw. Learn. Syst. 26, 1019–1034. https://doi.org/10.1109/TNNLS.2014.2330900 (2015).

    MathSciNet 
    Article 

    Google Scholar
     

  • Khandelwal, I. & Raman, S. Analysis of transfer and residual learning for detecting plant diseases using images of leaves. In Computational Intelligence: Theories, Applications and Future Directions—Volume II: ICCI-2017 (eds Verma, N. K. & Ghosh, A. K.) 295–306 (Springer Publ. Inc., Singapore, 2019).


    Google Scholar
     

  • Deng, J. et al. Imagenet: A large-scale hierarchical image database. IEEE Conf. Comp. Vis. Pattern Recog. 2009, 248–255. https://doi.org/10.1109/CVPR.2009.5206848 (2009).

    Article 

    Google Scholar
     

  • Hawkins, D. M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 44, 1–12. https://doi.org/10.1021/ci0342472 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Chollet, F. et al. (2015) Keras. GitHub Rep. 1, 1, https://github.com/fchollet/keras.

  • Chollet, F. et al. (2021) Keras api references—preprocessing layers. GitHub Rep. 1, 1, https://keras.io/api/layers/preprocessinglayers/.

  • Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction (Springer, New York, 2009).

    Book 

    Google Scholar
     

  • Kohavi, R. et al. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection 1137–1145 (California, Stanford, 1995).


    Google Scholar
     

  • Visa, S., Ramsay, B., Ralescu, A. & Knaap, E. (2011) Confusion matrix-based feature selection. Midwest. Artif. Intell. Cogn. Sci. Conf. 1, 120–127. http://ceur-ws.org/Vol-710/paper37.pdf.

  • Powers, D. M. W. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol. 2, 37–63. https://doi.org/10.48550/arXiv.2010.16061 (2011).

    Article 

    Google Scholar
     

  • Abadi, M. et al. (2015) TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from https://tensorflow.org

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (Create Space, California, 2009).


    Google Scholar
     

  • Liu, Y. et al. Study of sexual dimorphism in metatarsal bones: Geometric and inertial analysis of the three-dimensional reconstructed models. Front. endocrinology 12, 734362. https://doi.org/10.3389/fendo.2021.734362 (2021).

    Article 

    Google Scholar
     

  • Horbaly, H. E., Kenyhercz, M. W., Hubbe, M. & Steadman, D. W. The influence of body size on the expression of sexually dimorphic morphological traits. J. Forensic Sci. 64, 52–57. https://doi.org/10.1111/1556-4029.13850 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Aris, C., Nystrom, P. & Craig-Atkins, E. A new multivariate method for determining sex of immature human remains using the maxillary first molar. Am. J. Phys. Anthropol. 167, 672–683. https://doi.org/10.1002/ajpa.23695 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Christensen, A. M., Passalacqua, N. V. & Bartelink, E. J. Forensic Anthropology: Current Methods and Practice (Academic Press, Cambridge, 2019).


    Google Scholar
     

  • Satish, B., Moolrajani, C., Basnaker, M. & Kumar, P. Dental sex dimorphism: Using odontometrics and digital jaw radiography. J. Forensic Dental Sci. 9, 43. https://doi.org/10.4103/jfo.jfds_78_15 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Paknahad, M., Vossoughi, M. & Zeydabadi, F. A. A radio-odontometric analysis of sexual dimorphism in deciduous dentition. J. Forensic Leg. Med. 44, 54–57. https://doi.org/10.1016/j.jflm.2016.08.017 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Mandrekar, J. N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 5, 1315–1316. https://doi.org/10.1097/jto.0b013e3181ec173d (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Banerjee, A., Kamath, V. V., Satelur, K., Rajkumar, K. & Sundaram, L. Sexual dimorphism in tooth morphometrics: An evaluation of the parameters. J. Forensic Dental Sci. 8, 22–27. https://doi.org/10.4103/0975-1475.176946 (2016).

    Article 

    Google Scholar
     

  • Selim, H. F. et al. Sex determination through dental measurements in cone beam computed tomography. Rev. Bras. Odontol. Legal. 7, 50–58. https://doi.org/10.21117/rbol-v7n12020-299 (2020).

    Article 

    Google Scholar
     

  • Silva, R. F. et al. Panoramic radiograph as a clue for human identification: A forensic case report. Int. J. Forensic Odontol. 2, 85. https://doi.org/10.4103/ijfo.ijfo_4_17 (2017).

    Article 

    Google Scholar
     

  • Conceição, L. D., Ouriques, C. S., Busnello, A. F. & Lund, R. G. Importance of dental records and panoramic radiograph in human identification: A case report. Rev. Bras. Odontol. Legal. 5, 68–75. https://doi.org/10.21117/rbol.v5i1.152 (2018).

    Article 

    Google Scholar
     



  • Source link

    Related Articles