Home Dental Radiology Actual applications of magnetic resonance imaging in dentomaxillofacial region

Actual applications of magnetic resonance imaging in dentomaxillofacial region

by adminjay


  • 1.

    Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev. 1946;69:37–8.

    Article 

    Google Scholar
     

  • 2.

    Grover VP, Tognarelli JM, Crossey MM, Cox IJ, Taylor-Robinson SD, McPhail MJ. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J ClinExpHepatol. 2015;5(3):246–55.


    Google Scholar
     

  • 3.

    Nooij RP, Hof JJ, van Laar PJ, van der Hoorn A. Functional MRI for treatment evaluation in patients with head and neck squamous cell carcinoma: a review of the literature from a radiologist perspective. Curr Radiol Rep. 2018;6(1):2.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 4.

    Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol. 2003;45:169–84.

    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Keevil SF, Barbiroli B, Brooks JC. Absolute metabolite quantification by in vivo NMR spectroscopy: II. A multicentre trial of protocols for in vivo localised proton studies of human brain. Magn Reson Imaging. 1998;16(9):1093–106.

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Shah GV. MR imaging of salivary glands. Magn Reson Imaging Clin N Am. 2002;10(4):631–62.

    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Yabuuchi H, Fukuya T, Tajima T, Hachitanda Y, Tomita K, Koga M. Salivary gland tumors: diagnostic value of gadolinium-enhanced dynamic MR imaging with histopathologic correlation. Radiology. 2003;226(2):345–54.

    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Yabuuchi H, Matsuo Y, Kamitani T, Setoguchi T, Okafuji T, Soeda H, et al. Parotid gland tumors: can addition of diffusion-weighted MR imaging to dynamic contrastenhanced imaging improve diagnostic accuracy in characterization. Radiology. 2008;249(3):909–16.

    PubMed 
    Article 

    Google Scholar
     

  • 9.

    Khamis MEMAA, Ismail EI, Bayomy MF, El-Anwarc MW. The diagnostic efficacy of apparent diffusion coefficient value and Choline/Creatine ratio in differentiation between parotid gland tumors. Egypt J Radiol Nucl Med. 2018;49:358–67.

    Article 

    Google Scholar
     

  • 10.

    Zhang Y, Ou D, Gu Y, He X, Peng W. Evaluation of salivary gland function using diffusion-weighted magnetic resonance imaging for follow-up of radiation-induced xerostomia. Korean J Radiol. 2018;19(4):758–66.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 11.

    Regier M, Ries T, Arndt C, et al. Sjögren’s syndrome of the parotid gland: value of diffusion-weighted echo-planar MRI for diagnosis at an early stage based on MR sialography grading in comparison with healthy volunteers. Rofo. 2009;181(3):242–8.

    PubMed 
    Article 

    Google Scholar
     

  • 12.

    Terra GTC, Oliveira JXD, Hernandez A, Lourenço SV, Arita ES, Cortes ARG. Diffusion-weighted MRI for differentiation between sialadenitis and pleomorphic adenoma. Dentomaxillofac Radiol. 2017;46:20160257.

    PubMed 
    Article 

    Google Scholar
     

  • 13.

    Sumi M, CauterenSumiObaraIchikawaNakamura MVTMYT. Salivary gland tumors: use of intravoxel incoherent motion MR imaging for assessment of diffusion and perfusion for the differentiation of benign from malignant tumors. Radiology. 2012;263(3):770–7.

    PubMed 
    Article 

    Google Scholar
     

  • 14.

    Roberts C, Parker GJ, Rose CJ, et al. Glandular function in Sjögren syndrome: assessment with dynamic contrast-enhanced MR imaging and tracer kinetic modeling–initial experience. Radiology. 2008;246(3):845–53.

    PubMed 
    Article 

    Google Scholar
     

  • 15.

    King AD, David KW, Ahuja AT, Gary MK, Yuen HY, Wong KT, Andrew C. Salivary gland tumors at in vivo proton MR spectroscopy. Radiology. 2005;237(2):563–9.

    PubMed 
    Article 

    Google Scholar
     

  • 16.

    Ahmed NS, Mansour SM, El-Wakd MM, Al-Azizi HM, Abu-Taleb NS. The value of magnetic resonance sialography and magnetic resonance imaging versus conventional sialography of the parotid gland in the diagnosis and staging of Sjögren’s syndrome. Egypt Rheumatol. 2011;33(3):147–54.

    Article 

    Google Scholar
     

  • 17.

    Kalinowski M, Heverhagen JT, Rehberg E, Klose KJ, Wagner HJ. Comparative study of MR sialography and digital subtraction sialography for benign salivary gland disorders. AJNR Am J Neuroradiol. 2002;23(9):1485–92.

    PubMed 

    Google Scholar
     

  • 18.

    Trotta BM, Pease CS, John Rasamny Jk, Raghavan P, Mukherje S. Oral cavity and oropharyngeal squamous cell cancer: key imaging findings for staging and treatment planning. Radiographics. 2011;31(2):339–54.

    PubMed 
    Article 

    Google Scholar
     

  • 19.

    Chawla S, Kim S, Wang S, Poptani H. Diffusion-weighted imaging in head and neck cancers. Future Oncol. 2009;5(7):959–75.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Kitamoto E, Chikui T, Kawano S, Ohga M, Kobayashi K, Matsuo Y, Yoshiura T, Obara M, Honda H, Yoshiura K. The application of dynamic contrast-enhanced MRI and diffusion-weighted MRI in patients with maxillofacial tumors. Acad Radiol. 2015;22(2):210–6.

    PubMed 
    Article 

    Google Scholar
     

  • 21.

    Abdel Razek AA, Poptani H. MR spectroscopy of head and neck cancer. Eur J Radiol. 2013;82(6):982–9.

    PubMed 
    Article 

    Google Scholar
     

  • 22.

    Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, Momose M, Ishiyama T. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220:621–30.

    PubMed 
    Article 

    Google Scholar
     

  • 23.

    Razek AA. Diffusion tensor imaging in differentiation of residual head and neck squamous cell carcinoma from post-radiation changes. Magn Reson Imaging. 2018;1(54):84–9.

    Article 

    Google Scholar
     

  • 24.

    Vandecaveye V, De Keyzer F, Vander Poorten V, Dirix P, Verbeken E, Nuyts S, et al. Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiology. 2009;251(1):134–46.

    PubMed 
    Article 

    Google Scholar
     

  • 25.

    Kim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res. 2009;15:986–94.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Park M, Kim J, Choi YS, Seung-Koo L, Woo Koh Y, Se-Heon Kim K, Chang Choi E. Application of dynamic contrast-enhanced MRI parameters for differentiating squamous cell carcinoma and malignant lymphoma of the oropharynx. Am J Roentgenol. 2016;206(2):401–7.

    Article 

    Google Scholar
     

  • 27.

    Shukla-Dave A, Lee NY, Jansen JF, et al. Dynamic contrast-enhanced magnetic resonance imaging as a predictor of outcome in head-and-neck squamous cell carcinoma patients with nodal metastases. Int J Radiat Oncol Biol Phys. 2012;82(5):1837–44.

    PubMed 
    Article 

    Google Scholar
     

  • 28.

    Fujima N, Kudo K, Yoshida D, et al. Arterial spin labeling to determine tumor viability in head and neck cancer before and after treatment. J Magn Reson Imaging. 2014;40:920–8.

    PubMed 
    Article 

    Google Scholar
     

  • 29.

    Mukherji SK, Schiro S, Castillo M, Kwock L, Muller KE, Blackstock W. Proton MR spectroscopy of squamous cell carcinoma of the extracranial head and neck: in vitro and in vivo studies. Am J Neuroradiol. 1997;18:1057–72.

    PubMed 

    Google Scholar
     

  • 30.

    Yu Q, Yang J, Wang P, Shi H, Luo J. Preliminary assessment of benign maxillofacial and neck lesions with in vivo single-voxel 1H magnetic resonance spectroscopy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:264–70.

    PubMed 
    Article 

    Google Scholar
     

  • 31.

    Bezabeh T, Odlum O, Nason R, et al. Prediction of treatment response in head and neck cancer by magnetic resonance spectroscopy. Am J Neuroradiol. 2005;26:2108–13.

    PubMed 

    Google Scholar
     

  • 32.

    King A, Yeung D, Yu K, et al. Monitoring of treatment response after chemoradiotherapy for head and neck cancer using in vivo 1H MR spectroscopy. Eur Radiol. 2010;20:165–72.

    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Sanjay SK, Mukesh HG. Magnetic resonance techniques in lymph node imaging. Appl Radiol. 2004;33(7):34–44.


    Google Scholar
     

  • 34.

    Forghani R, Yu E, Levental M, Som PM, Curtin HD. Imaging evaluation of lymphadenopathy and patterns of lymph node spread in head and neck cancer. Expert Rev Anticancer Ther. 2015;15(2):207–24.

    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Tomas X, Pomes J, Berenguer J, et al. MR imaging of temporomandibular joint dysfunction: a pictorial review. Radiographics. 2006;26(3):765–81.

    PubMed 
    Article 

    Google Scholar
     

  • 36.

    Ashraf Baba I, Najmuddin M, Farooq Shah A, Yousuf A. TMJ imaging: a review. Int J Contemp Med Res. 2016;3(8):2253–6.


    Google Scholar
     

  • 37.

    Ahmad M, Hollender L, Anderson Q, et al. Research diagnostic criteria for temporomandibular disorders (RDC/TMD): development of image analysis criteria and examiner reliability for image analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(6):844–60.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Venetis G, Pilavaki M, Triantafyllidou K, Papachristodoulou A, Lazaridis N, Palladas P. The value of magnetic resonance arthrography of the temporomandibular joint in imaging disc adhesions and perforations. Dentomaxillofac Radiol. 2011;40(2):84–90.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 39.

    Zhang J, Gersdorff S, Frahm N. Real-time magnetic resonance imaging of temporomandibular joint dynamics. Open Med Imaging J. 2011;511:1–7.

    Article 

    Google Scholar
     

  • 40.

    Bhat V, Salins PC, Bhat V. Imaging spectrum of hemangioma and vascular malformations of the head and neck in children and adolescents. J Clin Imaging Sci. 2014;24(4):31.

    Article 

    Google Scholar
     

  • 41.

    Dong MJ, Zhou GY, Sun Q, Wang PZ, Yu Q, Qiang SK, Xue Yi. Evaluation of MR diffusion-weighted imaging (MR-DWI) between head and neck hemangioma and venous. J Stomatol. 2010;19(4):378–82.


    Google Scholar
     

  • 42.

    Chhabra A, Bajaj G, Wadhwa V, Quadri RS, White J, Myers LL, Amirlak B, Zuniga JR. MR neurographic evaluation of facial and neck pain: normal and abnormal craniospinal nerves below the skull base. Radiographics. 2018;38(5):1498–513.

    PubMed 
    Article 

    Google Scholar
     

  • 43.

    Skolnik AD, Loevner LA, Sampathu DM, Newman JG, Lee JY, Bagley LJ, Kim O. Cranial nerve Schwannomas: diagnostic imaging approach learned. Radiographics. 2016;36(5):1463–77.

    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Kurabayashi T, Ida M, Yasumoto M, et al. MRI of ranulas. Neuroradiology. 2000;42(12):917–22.

    PubMed 
    Article 

    Google Scholar
     

  • 45.

    Boeddinghaus R, Whyte A. Current concepts in maxillofacial imaging. Eur J Radiol. 2008;66:396–418.

    PubMed 
    Article 

    Google Scholar
     

  • 46.

    García-Ferrer L, Bagán JV, Martínez-Sanjuan V, Hernandez-Bazan S, García R, Jiménez-Soriano Y, Hervas V. MRI of mandibular osteonecrosis secondary to bisphosphonates. Am J Roentgenol. 2008;190(4):949–55.

    Article 

    Google Scholar
     

  • 47.

    Avril L, Lombardi T, Ailianou A, et al. Radiolucent lesions of the mandible: a pattern-based approach to diagnosis. Insights Imaging. 2014;5(1):85–101.

    PubMed 
    Article 

    Google Scholar
     

  • 48.

    Kapoor S. Comparative evaluation of ultrasonography and MRI in detection of odontogenic fascial space infections: a prospective study. Int J Med Res Health Sci. 2019;8(5):45–51.


    Google Scholar
     

  • 49.

    Hayeri MR, PouyaZiai ML, Shehata OM, Teytelboym OM, Huang BK. Soft-tissue infections and their imaging mimics: from cellulitis to necrotizing fasciitis. RadioGraphics. 2016;36(6):188–91.

    Article 

    Google Scholar
     

  • 50.

    Zhang S, Olthoff A, Frahm J. Real-time magnetic resonance imaging of normal swallowing. J Magn Reson Imaging. 2012;35(6):1372–9.

    PubMed 
    Article 

    Google Scholar
     

  • 51.

    Ekprachayakoon I, Miyamoto JJ, Inoue-Arai MS, Honda EI, Takada JI, Kurabayashi T, Moriyama K. New application of dynamic magnetic resonance imaging for the assessment of deglutitive tongue movement. Prog Orthod. 2018;19(1):45.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 52.

    Sawada E, et al. Increased apparent diffusion coefficient values of masticatory muscles on diffusion-weighted magnetic resonance imaging in patients with temporomandibular joint disorder and unilateral pain. J Oral Maxillofacial Surg. 2019;77(11):2223–9.

    Article 

    Google Scholar
     

  • 53.

    A Taner et.al (2019). Radiotherapy induced changes of masticatory muscles and parotid glands on MRI in patients with nasopharyngeal carcinoma

  • 54.

    Marshall RA, Mandell JC, Weaver MJ, Ferrone M, Sodickson A, Khurana B. Imaging features and management of stress, a typical, and pathologic fractures. Radiographics. 2018;38(7):2173–92.

    PubMed 
    Article 

    Google Scholar
     

  • 55.

    Hussain MW, Chaudhary MAG, Ahmed AR, et al. Latest trends in imaging techniques for dental implant: a literature review. Int J Radiol Radiat Ther. 2017;3(5):288–90.


    Google Scholar
     

  • 56.

    Flügge T, Ludwig U, Hövener J-B, Kohal R, Wismeijer D, Nelson K. Virtual implant planning and fully guided implant surgery using magnetic resonance imaging—proof of principle. Clin Oral Impl Res. 2020;00:1–9.


    Google Scholar
     

  • 57.

    DemirturkKocasarac H, Geha H, Gaalaas LR, Nixdorf DR. MRI for dental applications. Dent Clin North Am. 2018;62(3):467–80.

    Article 

    Google Scholar
     

  • 58.

    Bracher AK, Hofmann C, Bornstedt A, et al. Ultrashort echo time (UTE) MRI for the assessment of caries lesions. Dentomaxillofac Radiol. 2013;42(6):20120321.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 59.

    Mathew CA, Maller SV, Maller US, Maheshwaran M, Valarmathi S, Karrunakaran B. Evaluation of awareness among dentists about magnetic resonance imaging and their interactions with restorative dental materials: a survey among dentists in three districts of Tamilnadu. J Indian Acad Dent Spec Res. 2016;3:6–9.

    Article 

    Google Scholar
     

  • 60.

    Costa AL, Appenzeller S, Yasuda CL, Pereira FR, Zanardi VA, Cendes F. Artifacts in brain magnetic resonance imaging due to metallic dental objects. Med Oral Patol Oral Cir Bucal. 2009;14:E278–82.

    PubMed 

    Google Scholar
     

  • 61.

    Mathew CA, Maheswaran SM. Interactions between magnetic resonance imaging and dental material. J Pharm Bioallied Sci. 2013;5(Suppl 1):113–6.

    Article 

    Google Scholar
     

  • 62.

    Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815–50.

    PubMed 
    Article 

    Google Scholar
     

  • 63.

    Ghadimi M, Sapra A (2020) Magnetic resonance imaging (MRI), contraindications. [Updated 2020 May 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK551669/



  • Source link

    Related Articles

    Leave a Comment