Home Dental Radiology Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions

Does electrifying organic synthesis pay off? The energy efficiency of electro-organic conversions

by adminjay


  • 1.

    Waldvogel S.R. and Janza B.: Renaissance of electrosynthetic methods for the construction of complex molecules. Angew. Chem. Int. Ed. 53, 7122–7123 (2014).

    CAS 

    Google Scholar
     

  • 2.

    Wiebe A., Gieshoff T., Möhle S., Rodrigo E., Zirbes M., and Waldvogel S.R.: Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    CAS 

    Google Scholar
     

  • 3.

    Anastas P.T. and Kirchhoff M.M.: Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35, 686–694 (2002).

    CAS 

    Google Scholar
     

  • 4.

    Frontana-Uribe B.A., Little R.D., Ibanez J.G., Palma A., and Vasquez-Medrano R.: Organic electrosynthesis: A promising green methodology in organic chemistry. Green Chem. 12, 2099–2119 (2010).

    CAS 

    Google Scholar
     

  • 5.

    Pollok D. and Waldvogel S.R.: Electro-organic synthesis: A 21st Century Technique. Chem. Sci. (2020). In progress. doi:10.1039/D0SC01848A.


    Google Scholar
     

  • 6.

    Moeller K.D.: Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Waldvogel S.R., Lips S., Selt M., Riehl B., and Kampf C.J.: Electrochemical arylation reaction. Chem. Rev. 118, 6706–6765 (2018).

    CAS 

    Google Scholar
     

  • 8.

    Yan M., Kawamata Y., and Baran P.S.: Synthetic organic electrochemical methods since 2000: On the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS 

    Google Scholar
     

  • 9.

    Puettner H.: Organic Electrochemistry, 4th ed., Chapter 31, Lund H. and Hammerich O.: (Crc Press Inc, Boca Raton, 2000), pp. 1259–1307.

  • 10.

    Hamann C.H., Hamnett A., and Vielstich W.: Electrochemistry (Wiley-VCH, Weinheim, 2007), pp. 159–164.


    Google Scholar
     

  • 11.

    Bard A.J., Stratmann M., Schaefer H.J., and Jörissen J.: Practical aspects of preparative scale electrolysis. Encyclopedia of Electrochemistry 8, 35 (2004).


    Google Scholar
     

  • 12.

    Chen C., Khosrowabadi Kotyk J.F., and Sheehan S.W.: Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    CAS 

    Google Scholar
     

  • 13.

    De Luna P., Hahn C., Higgins D., Jaffer S.A., Jaramillo T.F., and Sargent E.H.: What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, 1–9 (2019).


    Google Scholar
     

  • 14.

    Nitopi S.A., Bertheussen E., Scott S.B., Liu X., Engstfeld A.K., Horch S., Seger B., Stephens I.E.L., Chan K., Hahn C., Nørskov J.K., Jaramilo T.F., and Chorkendorff I.: Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    CAS 

    Google Scholar
     

  • 15.

    Yang N., Waldvogel S.R., and Jiang X.: Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces 8, 28357–28371 (2016).

    CAS 

    Google Scholar
     

  • 16.

    Higgins D., Hahn C., Xiang C., Jaramillo T.F., and Weber A.Z.: Gas-diffusion electrodes for carbon dioxide reduction: A new paradigm. ACS Energy Lett. 4, 317–324 (2019).

    CAS 

    Google Scholar
     

  • 17.

    Rademaekers K., Smith M., Yearwood J., Saheb Y., Moerenhout J., Pollier K., Debrosses N., Badouard T., Peffen A., Pollitt H., Heald S., and Altman M.: Study on energy prices, costs and subsidies and their impact on industry and households. Trinomics 74 (2018).


    Google Scholar
     

  • 18.

    Li X., Anderson P., Jhong H.M., Paster M., Stubbins J.F., and Kenis P.J.A.: Greenhouse gas emissions, energy efficiency, and cost of synthetic fuel production using electrochemical CO2 conversion and the Fischer-Tropsch process. Energy Fuels 30, 5980–5989 (2016).

    CAS 

    Google Scholar
     

  • 19.

    Pletcher D.: The cathodic reduction of carbon dioxide–What can it realistically achieve? A mini review. Electrochem. Commun. 61, 97–101 (2015).

    CAS 

    Google Scholar
     

  • 20.

    Küngas R.: Review–Electrochemical CO2 reduction for CO production: Comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).


    Google Scholar
     

  • 21.

    Al-Rowaili F.N., Jamal A., Ba Shammakh M.S., and Rana A.A.: Review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal-organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustain. Chem. Eng. 6, 15895–15914 (2018).

    CAS 

    Google Scholar
     

  • 22.

    Dexin Yang Y., Qinggong Z., Chunjun C., Huizhen L., Zhimin L., Zhijuan Z., Xiaoyu Z., Shoujie L., and Buxing H.: Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 1–9 (2019).


    Google Scholar
     

  • 23.

    Tackett B.M., Gomez E., and Chen J.G.: Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat. Catal. 2, 381–386 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Möhle S., Zirbes M., Rodrigo E., Gieshoff T., Wiebe A., and Waldvogel S.R.: Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).


    Google Scholar
     

  • 25.

    Wendt H., Vogt H., Kreysa G., Kolb D.M., Engelmann G.E., Ziegler J.C., Goldacker H., Jüttner K., Gallla U., Schmieder H., and Steckhan E.: Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, Weinheim, 2000); p. 73–85.


    Google Scholar
     

  • 26.

    Vernon D.: Mechanisms of the electrohydrodimerization of activated olefins. The mechanism in proton donor poor solvents, a revelation. Acta Chem. Scand. 35, 51–52 (1981).


    Google Scholar
     

  • 27.

    Vyazankin I.L. and Knunyants N.S.: Hydrodimerization of acrylonitrile. Proc. Natl. Acad. Sci. USA 6, 253–256 (1958).

  • 28.

    Vaze A.S., Sawant S.B., and Pangarkar V.G.: Electrochemical oxidation of p-t-butyltoluene to p-t-butylbenzaldehyde. J. Appl. Chem. 28, 623–626 (1998).

    CAS 

    Google Scholar
     

  • 29.

    Hannebaum H., Voss H., and Weiper-Idelmann A.: patent EP 0638665 B1, 1996.

  • 30.

    Wang L., Kong Y., Jiang J., Wei D., Li P., Yang S., and Ting Y.: Optimal wastewater treatment using a packed-bed electrode reactor (PBER): From laboratory experiments to industrial-scale approaches. Chem. Eng. J. 334, 707–713 (2018).

    CAS 

    Google Scholar
     

  • 31.

    Wiebe A., Schollmeyer D., Dyballa K.M., Franke R., and Waldvogel S.R.: Selective synthesis of partially protected nonsymmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55, 11801–11805 (2016).

    CAS 

    Google Scholar
     

  • 32.

    Schäfer H.J.: Recent Contributions of Kolbe Electrolysis to Organic Synthesis (Springer, 2005), Berlin, Heidelberg; pp. 91–151. ISBN 978-3-540-48139-3.

  • 33.

    Kirste A., Schnakenburg G., Stecker F., Fischer A., and Waldvogel S.R.: Anodic phenol: Arene cross-coupling reaction on boron-doped. Angew. Chem. Int. Ed. 49, 971–975 (2010).

    CAS 

    Google Scholar
     

  • 34.

    Alexakis A. and Polet D.: Biphenol-based phosphoramidite ligands for the enantioselective copper-catalyzed conjugate addition of diethylzinc. J. Org. Chem. 69, 5660–5667 (2004).

    CAS 

    Google Scholar
     

  • 35.

    Brunel J.M. and Ce P.: BINOL: A versatile chiral reagent. Chem. Rev. 105, 857–898 (2005).

    CAS 

    Google Scholar
     

  • 36.

    Monti C., Gennari C., and Piarulli U.: Enantioselective conjugate addition of phenylboronic acid to enones catalysed by a chiral tropos/atropos rhodium complex at the coalescence temperature. Chem. Commun. 42, 5281–5283 (2005).


    Google Scholar
     

  • 37.

    Franke R., Selent D., and Bo A.: Applied hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    CAS 

    Google Scholar
     

  • 38.

    Mormul J., Mulzer M., Rosendahl T., Rominger F., Limbach M., and Hofmann P.: Synthesis of adipic aldehyde by n-selective hydroformylation of 4-pentenal. Organometallics 34, 4102–4108 (2015).

    CAS 

    Google Scholar
     

  • 39.

    Yadav J.S., Reddy B.V.S., Uma Gayathri K., and Prasad A.R.: [Bmim]PF6/RuCl3xH2O: A novel and recyclable catalytic system for the oxidative coupling of β-naphthols. New J. Chem. 27, 1684–1686 (2003).

    CAS 

    Google Scholar
     

  • 40.

    Hwang D., Chen C., and Uang B.: Aerobic catalytic oxidative coupling of 2-naphthols and phenols by VO (acac)2. Chem. Commun. 13, 1207–1208 (1999).


    Google Scholar
     

  • 41.

    Sharma V.B., Jain S.L., and Sain B.: Methyltrioxorhenium-catalyzed aerobic oxidative coupling of 2-naphthols to binaphthols. Tetrahedron Lett. 44, 2655–2656 (2003).

    CAS 

    Google Scholar
     

  • 42.

    Malkowsky I.M., Fröhlich R., Griesbach U., Pütter H., and Waldvogel S.R.: Facile and reliable synthesis of tetraphenoxyborates and their properties. Eur. J. Inorg. Chem. 8, 1690–1697 (2006).


    Google Scholar
     

  • 43.

    Malkowsky I.M., Rommel C.E., Wedeking K., Fröhlich R., Bergander K., Nieger M., Quaiser C., Griesbach U., Pütter H., and Waldvogel S.R.: Facile and highly diastereoselective formation of a novel pentacyclic scaffold by direct anodic oxidation of 2,4-dimethylphenol. Eur. J. Org. Chem. 2006, 241–245 (2006).


    Google Scholar
     

  • 44.

    Barjau J., Königs P., Kataeva O., and Waldvogel S.R.: Reinvestigation of highly diastereoselective pentacyclic spirolactone formation by direct anodic oxidation of 2,4-dimethylphenol. Synlett 15, 2309–2312 (2008).


    Google Scholar
     

  • 45.

    Barjau J., Schnakenburg G., and Waldvogel S.R.: Diversity-oriented synthesis of polycyclic scaffolds by modification of an anodic product derived from 2,4-dimethylphenol. Angew. Chem. Int. Ed. 50, 1415–1419 (2011).

    CAS 

    Google Scholar
     

  • 46.

    Rommel C., Malkowsky I., Waldvogel S. R., Pütter H., and Griesbach U.: patent WO 2005/075709 A2, 2005.

  • 47.

    Malkowsky I.M., Rommel C.E., Fröhlich R., Griesbach U., Püttner H., and Waldvogel S.R.: Novel template-directed anodic phenol-coupling reaction. Chemistry 12, 7482–7488 (2006).

    CAS 

    Google Scholar
     

  • 48.

    Rommel C. E., Malkowsky I., Waldvogel S., Puetter H., and Griesbach U.: Anodic dimerization of substituted benzenes for the production of biarylalcohols, PCT Int. Appl. WO 2005075709 A2 20050818, 2005.


    Google Scholar
     

  • 49.

    Malkowsky I.M., Griesbach U., Pütter H., and Waldvogel S.R.: Unexpected highly chemoselective anodic ortho-coupling reaction of 2,4-dimethylphenol on boron-doped diamond electrodes. Eur. J. Org. Chem. 20, 4569–4572 (2006).


    Google Scholar
     

  • 50.

    Kirste A., Nieger M., Malkowsky I.M., Stecker F., Fischer A., and Waldvogel S.R.: Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15, 2273–2277 (2009).

    CAS 

    Google Scholar
     

  • 51.

    Ayata S., Stefanova A., Ernst S., and Baltruschat H.: The electro-oxidation of water and alcohols at BDD in hexafluoroisopropanol. J. Electroanal. Chem. 701, 1–6 (2013).

    CAS 

    Google Scholar
     

  • 52.

    Lips S., Wiebe A., Elsler B., Schollmeyer D., Dyballa K.M., Franke R., and Waldvogel S.R.: Synthesis of meta-terphenyl-2,2′′-diols by anodic C−C cross-coupling reactions. Angew. Chem. Int. Ed. 55, 10872–10876 (2016).

    CAS 

    Google Scholar
     

  • 53.

    Cheng J. and Deming T.J.: Synthesis of polypeptides by ring-opening polymerization of α-amino acid N-carboxyanhydrides. Pept. Mater. 310, 1–26 (2011).


    Google Scholar
     

  • 54.

    Lips S. and Waldvogel S.R.: Use of boron-doped diamond electrodes in electro-organic synthesis. ChemElectroChem 6, 1649–1660 (2019).

    CAS 

    Google Scholar
     

  • 55.

    Selt M., Mentizi S., Schollmeyer D., Franke R., and Waldvogel S.R.: Selective and scalable dehydrogenative electrochemical synthesis of 3,3’,5,5’-tetramethyl-2,2’-biphenol. Synlett 30, 2062–2067 (2019).

    CAS 

    Google Scholar
     

  • 56.

    Selt M., Franke R., and Waldvogel S.R.: Supporting-electrolyte-free and scalable flow process for the electrochemical synthesis of 3,3′,5,5′-tetramethyl-2,2′-biphenol. Org. Process Res. Dev. (2020). In progress. doi:10.1021/acs.oprd.0c00170.


    Google Scholar
     

  • 57.

    Kirste A., Elsler B., Schnakenburg G., and Waldvogel S.R.: Efficient anodic and direct phenol-arene C,C cross-coupling: The benign role of water or methanol. J. Am. Chem. Soc. 134, 3571–3576 (2012).

    CAS 

    Google Scholar
     

  • 58.

    Röckl J.L., Schollmeyer D., Franke R., and Waldvogel S.R.: Dehydrogenative anodic C−C coupling of phenols bearing electron-withdrawing groups. Angew. Chem. Int. Ed. 59, 315–319 (2020).


    Google Scholar
     

  • 59.

    Kuilin L., Yanchen F., Ying Z., Yi Y., Jinrong W., Ying Z., and Qianfan Z.: Elastic Ag-anchored N-doped graphene/carbon foam for the selective electrochemical reduction of carbon dioxide to ethanol. J. Mater. Chem. A 6, 5025–5031 (2018).


    Google Scholar
     

  • 60.

    Hoang T.T.H., Verma S., Ma S., Fister T.T., Timoshenko J., Frenkel A.I., Kenis P.J., and Gewirth A.A.: Nanoporous copper-silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS 

    Google Scholar
     

  • 61.

    Li F., Thevenon A., Rosas-Hernández A., Wang Z., Li Y., Gabardo C.M., Ozden A., Dinh C.T., Li J., Wang Y., Edwards J.P., Xu Y., McCallum C., Tao L., Liang Z.-Q., Luo M., Wang X., Li H., O’Brien C.P., Tan C.-S., Nam D.-H., Quintero-Bermudez R., Zhuang T.-T., Li Y.C., Han Z., Britt R.D., Sinton D., Agapie T., Peters J.C., and Sargent E.H.: Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS 

    Google Scholar
     

  • 62.

    García de Arquer F.P., Dinh C.-T.-, Ozden A., Wicks J., McCallum C., Kirmani A.R., Nam D.-H., Gabardo C., Seifitokaldani A., Wang X., Li Y.C., Li F., Edwards J., Richter L.J., Thorpe S.J., Sinton D., and Sargent E.H.: CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).


    Google Scholar
     



  • Source link

    Related Articles