Home Pediatric Dentistry A longitudinal study of the development of the saliva microbiome in infants 2 days to 5 years compared to the microbiome in adolescents

A longitudinal study of the development of the saliva microbiome in infants 2 days to 5 years compared to the microbiome in adolescents

by adminjay


  • 1.

    Han, Y. W. & Wang, X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J. Dent. Res. 92, 485–491 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Sampaio-Maia, B., Caldas, I. M., Pereira, M. L., Perez-Mongiovi, D. & Araujo, R. The Oral Microbiome in Health and Its Implication in Oral and Systemic Diseases. Adv. Appl. Microbiol.l 97, 171–210 (2016).

    CAS 

    Google Scholar
     

  • 3.

    Gao, L. et al. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9, 488–500 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Fak, F., Tremaroli, V., Bergstrom, G. & Bäckhed, F. Oral microbiota in patients with atherosclerosis. Atherosclerosis 243, 573–578 (2015).

    PubMed 

    Google Scholar
     

  • 5.

    Bearfield, C., Davenport, E. S., Sivapathasundaram, V. & Allaker, R. P. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG. 109, 527–533 (2002).

    PubMed 

    Google Scholar
     

  • 6.

    Rodriguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26, 26050 (2015).

    PubMed 

    Google Scholar
     

  • 7.

    Nelson-Filho, P. et al. Dynamics of microbial colonization of the oral cavity in newborns. Braz. Dent. J. 24, 415–419 (2013).

    PubMed 

    Google Scholar
     

  • 8.

    Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).

    CAS 

    Google Scholar
     

  • 9.

    Kononen, E., Kanervo, A., Takala, A., Asikainen, S. & Jousimies-Somer, H. Establishment of oral anaerobes during the first year of life. J. Dent. Res. 78, 1634–1639 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Kononen, E. Development of oral bacterial flora in young children. Ann. Med. 32, 107–112 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Lif Holgerson, P., Ohman, C., Ronnlund, A. & Johansson, I. Maturation of Oral Microbiota in Children with or without Dental Caries. PLoS One 10, e0128534 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Kahharova, D. et al. Maturation of the Oral Microbiome in Caries-Free Toddlers: A Longitudinal Study. J. Dent. Res. 99, 159–167 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Kennedy, B. et al. Oral Microbiota Development in Early Childhood. Sci. Rep. 9, 19025 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 107, 11971–11975 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • 16.

    Sulyanto, R. M., Thompson, Z. A., Beall, C. J., Leys, E. J. & Griffen, A. L. The Predominant Oral Microbiota Is Acquired Early in an Organized Pattern. Sci. Rep. 9, 10550 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Sampaio-Maia, B. & Monteiro-Silva, F. Acquisition and maturation of oral microbiome throughout childhood: An update. Dent. Res. J. (Isfahan) 11, 291–301 (2014).


    Google Scholar
     

  • 18.

    Xu, X. et al. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 17, 699–710 (2015).

    PubMed 

    Google Scholar
     

  • 19.

    Gomez, A. & Nelson, K. E. The Oral Microbiome of Children: Development, Disease, and Implications Beyond Oral Health. Microb. Ecol. 73, 492–503 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Holgerson, P. L. et al. Oral microbial profile discriminates breast-fed from formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 56, 127–136 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Eriksson, L., Lif Holgerson, P. & Johansson, I. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community. Sci. Rep. 7, 5861 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Tanner, A. C. R., Kressirer, C. A., Rothmiller, S., Johansson, I. & Chalmers, N. I. The Caries Microbiome: Implications for Reversing Dysbiosis. Adv. Dent. Res. 29, 78–85 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Backhed, F. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe 17, 852 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Ho, N. T. et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 9, 4169 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Yasmin, F. et al. Cesarean Section, Formula Feeding, and Infant Antibiotic Exposure: Separate and Combined Impacts on Gut Microbial Changes in Later Infancy. Front. Pediatr. 5, 200 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Lif Holgerson, P., Harnevik, L., Hernell, O., Tanner, A. C. & Johansson, I. Mode of birth delivery affects oral microbiota in infants. J. Dent. Res. 90, 1183–1188 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Lonnerdal, B. Infant formula and infant nutrition: bioactive proteins of human milk and implications for composition of infant formulas. Am. J. Clin. Nutr. 99, 712S–717S (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Moossavi, S. et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe 25, 324–335 e324 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Timby, N. et al. Oral Microbiota in Infants Fed a Formula Supplemented with Bovine Milk Fat Globule Membranes – A Randomized Controlled Trial. PLoS One 12, e0169831 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Timby, N. et al. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 60, 384–389 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Wopereis, H. et al. A specific synbiotic-containing amino acid-based formula restores gut microbiota in non-IgE mediated cow’s milk allergic infants: a randomized controlled trial. Clin. Transl. Allergy 9, 27 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Tuominen, H., Collado, M. C., Rautava, J., Syrjanen, S. & Rautava, S. Composition and maternal origin of the neonatal oral cavity microbiota. J. Oral Microbiol. 11, 1663084 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Dominguez-Bello, M. G., Blaser, M. J., Ley, R. E. & Knight, R. Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. Gastroenterology 140, 1713–1719 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Barfod, M. N., Christensen, L. B., Twetman, S. & Lexner, M. O. Caries prevalence in Danish pre-school children delivered vaginally and by caesarean section. Acta Odontol. Scand. 70, 190–193 (2012).

    PubMed 

    Google Scholar
     

  • 39.

    Boustedt, K., Roswall, J., Twetman, S. & Dahlgren, J. Influence of mode of delivery, family and nursing determinants on early childhood caries development: a prospective cohort study. Acta Odontol. Scand. 76, 595–599 (2018).

    PubMed 

    Google Scholar
     

  • 40.

    Azevedo, M. et al. Influence of delivery and feeding mode in oral fungi colonization – a systematic review. Microbial Cell. 7, 36–45 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Neves, A. B. et al. Comparison between Clinical Aspects and Salivary Microbial Profile of Children with and without Early Childhood Caries: A Preliminary Study. J. Clin. Pediatr. Dent. 39, 209–214 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Hesselmar, B. et al. Pacifier cleaning practices and risk of allergy development. Pediatrics 131, e1829–1837 (2013).

    PubMed 

    Google Scholar
     

  • 43.

    Chau, K. et al. Probiotics for infantile colic: a randomized, double-blind, placebo-controlled trial investigating Lactobacillus reuteri DSM 17938. J. Pediatr. 166, 74–78 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Romani Vestman, N., Chen, T., Lif Holgerson, P., Ohman, C. & Johansson, I. Oral Microbiota Shift after 12-Week Supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; A Randomized Control Trial. PLoS One 10, e0125812 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Wan, A. K. et al. Association of Streptococcus mutans infection and oral developmental nodules in pre-dentate infants. J Dent Res. 80, 1945–1948 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Tanner, A. C. et al. The microbiota of young children from tooth and tongue samples. J. Dent. Res. 81, 53–57 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Salako, N. O., Rotimi, V. O., Preeta, R. & Khodakhast, F. The bacteriology of the supragingival plaque of child dental patients in Kuwait. Med. Princ. Pract. 13, 191–195 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Agostoni, C., Carratu, B., Boniglia, C., Riva, E. & Sanzini, E. Free amino acid content in standard infant formulas: comparison with human milk. J. Am. Coll. Nutr. 19, 434–438 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Lonnerdal, B., Forsum, E. & Hambraeus, L. A longitudinal study of the protein, nitrogen, and lactose contents of human milk from Swedish well-nourished mothers. Am. J. Clin. Nutr. 29, 1127–1133 (1976).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Johansson, I., Witkowska, E., Kaveh, B., Lif Holgerson, P. & Tanner, A. C. The Microbiome in Populations with a Low and High Prevalence of Caries. J. Dent. Res. 95, 80–86 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Renaud, G., Stenzel, U., Maricic, T., Wiebe, V. & Kelso, J. deML: robust demultiplexing of Illumina sequences using a likelihood-based approach. Bioinformatics 31, 770–772 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Escapa, I. F. et al. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. mSystems 3 (2018).

  • 56.

    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Heberle, H., Meirelles, G. V., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, 169 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Bylesjö, M. et al. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemometrics 20, 341–351 (2006).


    Google Scholar
     

  • 60.

    Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Related Articles