Home Dental Radiology Condyle bone destruction: the association between temporomandibular joint vibration and finite element analysis

Condyle bone destruction: the association between temporomandibular joint vibration and finite element analysis

by adminjay


  • Bae S, Park MS, Han JW, Kim YJ. Correlation between pain and degenerative bony changes on cone-beam computed tomography images of temporomandibular joints. Maxillofac Plast Reconstr Surg. 2017;39(1):19.

    Article 

    Google Scholar
     

  • Xu K, Meng Z, Xian XM, et al. LncRNA PVT1 induces chondrocyte apoptosis through upregulation of TNF-α in synoviocytes by sponging miR-211–3p. Mol Cell Prob. 2020;52:101560.

    Article 

    Google Scholar
     

  • Suvinen TI, Reade PC, Kemppainen P, Könönen M, Dworkin SF. Review of aetiological concepts of temporomandibular pain disorders: towards a biopsychosocial model for integration of physical disorder factors with psychological and psychosocial illness impact factors. Eur J Pain (London, England). 2005;9(6):613–33.

    Article 

    Google Scholar
     

  • Stringert HG, Worms FW. Variations in skeletal and dental patterns in patients with structural and functional alterations of the temporomandibular joint: a preliminary report. Am J Orthod. 1986;89(4):285–97.

    Article 

    Google Scholar
     

  • Emshoff R, Moriggl A, Rudisch A, Laimer K, Neunteufel N, Crismani A. Are temporomandibular joint disk displacements without reduction and osteoarthrosis important determinants of mandibular backward positioning and clockwise rotation? Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):435–41.

    Article 

    Google Scholar
     

  • Jeon DM, Jung WS, Mah SJ, Kim TW, Ahn SJ. The effects of TMJ symptoms on skeletal morphology in orthodontic patients with TMJ disc displacement. Acta Odontol Scand. 2014;72(8):776–82.

    Article 

    Google Scholar
     

  • Nebbe B, Major PW, Prasad N. Female adolescent facial pattern associated with TMJ disk displacement and reduction in disk length: part I. Am J Orthod Dentofacial Orthop. 1999;116(2):168–76.

    Article 

    Google Scholar
     

  • Shu C, Xiong X, Huang L, Liu Y. The relation of cephalometric features to internal derangements of the temporomandibular joint: A systematic review and meta-analysis of observational studies. Orthod Craniofac Res. 2020. https://doi.org/10.1111/ocr.12454.

    Article 
    PubMed 

    Google Scholar
     

  • Liu Z, Qian Y, Zhang Y, Fan Y. Effects of several temporomandibular disorders on the stress distributions of temporomandibular joint: a finite element analysis. Comput Methods Biomech Biomed Engin. 2016;19(2):137–43.

    Article 

    Google Scholar
     

  • Wu Y, Cisewski SE, Coombs MC, et al. Effect of sustained joint loading on TMJ disc nutrient environment. J Dent Res. 2019;98(8):888–95.

    Article 

    Google Scholar
     

  • Park IY, Kim JH, Park YH. Three-dimensional cone-beam computed tomography based comparison of condylar position and morphology according to the vertical skeletal pattern. Korean J Orthod. 2015;45(2):66–73.

    Article 

    Google Scholar
     

  • Sharma S, Crow HC, Kartha K, McCall WD Jr, Gonzalez YM. Reliability and diagnostic validity of a joint vibration analysis device. BMC Oral Health. 2017;17(1):56.

    Article 

    Google Scholar
     

  • Kaymak D, Karakis D, Dogan A. Evolutionary spectral analysis of temporomandibular joint sounds before and after anterior repositioning splint therapy in patients with internal derangement. Int J Prosthodont. 2019;32(6):475–81.

    Article 

    Google Scholar
     

  • Ishigaki S, Bessette RW, Maruyama T. Vibration analysis of the temporomandibular joints with degenerative joint disease. Cranio. 1993;11(4):276–83.

    Article 

    Google Scholar
     

  • Deregibus A, Castroflorio T, De Giorgi I, Burzio C, Debernardi C. Diagnostic concordance between MRI and electrovibratography of the temporomandibular joint of subjects with disc displacement disorders. Dentomaxillofac Radiol. 2013;42(4):20120155.

    Article 

    Google Scholar
     

  • Abrão AF, Paiva G, Weffort SY, de Fantini SM. Clinical exam and electrovibratography detecting articular disk displacement: a comparative study. Cranio. 2011;29(4):270–5.

    Article 

    Google Scholar
     

  • Widmalm SE, Williams WJ, Djurdjanovic D, McKay DC. The frequency range of TMJ sounds. J Oral Rehabil. 2003;30(4):335–46.

    Article 

    Google Scholar
     

  • Devi J, Verma M, Gupta R. Assessment of treatment response to splint therapy and evaluation of TMJ function using joint vibration analysis in patients exhibiting TMJ disc displacement with reduction: A clinical study. Indian J Dent Res. 2017;28(1):33–43.

    Article 

    Google Scholar
     

  • Owen AH. Rationale and utilization of temporomandibular joint vibration analysis in an orthopedic practice. Cranio. 1996;14(2):139–53.

    Article 

    Google Scholar
     

  • Olivieri KA, Garcia AR, Paiva G, Stevens C. Joint vibrations analysis in asymptomatic volunteers and symptomatic patients. Cranio. 1999;17(3):176–83.

    Article 

    Google Scholar
     

  • Huang ZS, Lin XF, Li XL. Characteristics of temporomandibular joint vibrations in anterior disk displacement with reduction in adults. Cranio. 2011;29(4):276–83.

    Article 

    Google Scholar
     

  • Mazzetto MO, Hotta TH, Carrasco TG, Mazzetto RG. Characteristics of TMD noise analyzed by electrovibratography. Cranio. 2008;26(3):222–8.

    Article 

    Google Scholar
     

  • Prinz JF. Physical mechanisms involved in the genesis of temporomandibular joint sounds. J Oral Rehabil. 1998;25(9):706–14.

    Article 

    Google Scholar
     

  • Gay T, Bertolami CN. The acoustical characteristics of the normal temporomandibular joint. J Dent Res. 1988;67(1):56–60.

    Article 

    Google Scholar
     

  • Tanzilli RA, Tallents RH, Katzberg RW, Kyrkanides S, Moss ME. Temporomandibular joint sound evaluation with an electronic device and clinical evaluation. Clin Orthod Res. 2001;4(2):72–8.

    Article 

    Google Scholar
     

  • Rutherford DJ. Intra-articular pressures and joint mechanics: should we pay attention to effusion in knee osteoarthritis? Med Hypotheses. 2014;83(3):292–5.

    Article 

    Google Scholar
     

  • Kuroda S, Tanimoto K, Izawa T, Fujihara S, Koolstra JH, Tanaka E. Biomechanical and biochemical characteristics of the mandibular condylar cartilage. Osteoarthr Cartil. 2009;17(11):1408–15.

    Article 

    Google Scholar
     

  • Savoldelli C, Bouchard PO, Loudad R, Baque P, Tillier Y. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis. Surg Radiol Anatomy SRA. 2012;34(5):405–13.

    Article 

    Google Scholar
     

  • Mori H, Horiuchi S, Nishimura S, et al. Three-dimensional finite element analysis of cartilaginous tissues in human temporomandibular joint during prolonged clenching. Arch Oral Biol. 2010;55(11):879–86.

    Article 

    Google Scholar
     

  • Aoun M, Mesnard M, Monède-Hocquard L, Ramos A. Stress analysis of temporomandibular joint disc during maintained clenching using a viscohyperelastic finite element model. J Oral Maxillofac Surg. 2014;72(6):1070–7.

    Article 

    Google Scholar
     

  • Tanaka E, del Pozo R, Tanaka M, et al. Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening. Med Eng Phys. 2004;26(6):503–11.

    Article 

    Google Scholar
     

  • Pérez del Palomar A, Doblaré M. Influence of unilateral disc displacement on the stress response of the temporomandibular joint discs during opening and mastication. J Anat 2007;211(4):453–463.

  • Nguyen MS, Saag M, Voog-Oras Ãœ, Nguyen T, Jagomägi T. Temporomandibular disorder signs, occlusal support, and craniofacial structure changes among the elderly vietnamese. J Maxillofac Oral Surg. 2018;17(3):362–71.

    Article 

    Google Scholar
     



  • Source link

    Related Articles