Home Dental Radiology Intelligent quantitative assessment of skeletal maturation based on multi-stage model: a retrospective cone-beam CT study of cervical vertebrae

Intelligent quantitative assessment of skeletal maturation based on multi-stage model: a retrospective cone-beam CT study of cervical vertebrae

by adminjay


  • Manlove AE, Romeo G, Venugopalan SR. Craniofacial growth: current theories and influence on management. Oral Maxillofac Surg Clin N Am. 2020;32:167–75. https://doi.org/10.1016/j.coms.2020.01.007.

    Article 

    Google Scholar
     

  • Lee YS, Choi SH, Kim KH, Hwang CJ. Evaluation of skeletal maturity in the cervical vertebrae and hand-wrist in relation to vertical facial types. Korean J Orthod. 2019;49:319–25. https://doi.org/10.4041/kjod.2019.49.5.319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demirjian A, Buschang PH, Tanguay R, Patterson DK. Interrelationships among measures of somatic, skeletal, dental, and sexual maturity. Am J Orthod. 1985;88:433–8. https://doi.org/10.1016/0002-9416(85)90070-3.

    Article 
    PubMed 

    Google Scholar
     

  • Morris JM, Park JH. Correlation of dental maturity with skeletal maturity from radiographic assessment: a review. J Clin Pediatr Dent. 2012;36:309–14. https://doi.org/10.17796/jcpd.36.3.l403471880013622.

    Article 
    PubMed 

    Google Scholar
     

  • Fishman LS. Chronological versus skeletal age, an evaluation of craniofacial growth. Angle Orthod. 1979;49:181–9. https://doi.org/10.1043/0003-3219(1979)049%3c0181:CVSAAE%3e2.0.CO;2.

    Article 
    PubMed 

    Google Scholar
     

  • Gandini P, Mancini M, Andreani F. A comparison of hand-wrist bone and cervical vertebral analyses in measuring skeletal maturation. Angle Orthod. 2006;76:984–9. https://doi.org/10.2319/070605-217.

    Article 
    PubMed 

    Google Scholar
     

  • McNamara JA, Franchi L. The cervical vertebral maturation method: a user’s guide. Angle Orthod. 2018;88:133–43. https://doi.org/10.2319/111517-787.1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szemraj A, Wojtaszek-Słomińska A, Racka-Pilszak B. Is the cervical vertebral maturation (CVM) method effective enough to replace the hand-wrist maturation (HWM) method in determining skeletal maturation?—a systematic review. Eur J Radiol. 2018;102:125–8. https://doi.org/10.1016/j.ejrad.2018.03.012.

    Article 
    PubMed 

    Google Scholar
     

  • Franchi L, Baccetti T, McNamara JA. Mandibular growth as related to cervical vertebral maturation and body height. Am J Orthod Dentofac Orthop. 2000;118:335–40. https://doi.org/10.1067/mod.2000.107009.

    Article 

    Google Scholar
     

  • Cunha AC, Cevidanes LHS, Sant’Anna EF, et al. Staging hand-wrist and cervical vertebrae images: a comparison of reproducibility. Dentomaxillofacial Radiol. 2018;47:20170301. https://doi.org/10.1259/dmfr.20170301.

    Article 

    Google Scholar
     

  • Sohrabi A, Babay Ahari S, Moslemzadeh H, et al. The reliability of clinical decisions based on the cervical vertebrae maturation staging method. Eur J Orthod. 2016;38:8–12. https://doi.org/10.1093/ejo/cjv030.

    Article 
    PubMed 

    Google Scholar
     

  • Mito T, Sato K, Mitani H. Cervical vertebral bone age in girls. Am J Orthod Dentofac Orthop. 2002;122:380–5. https://doi.org/10.1067/mod.2002.126896.

    Article 

    Google Scholar
     

  • Chen L, Liu J, Xu T, et al. Quantitative skeletal evaluation based on cervical vertebral maturation: a longitudinal study of adolescents with normal occlusion. Int J Oral Maxillofac Surg. 2010;39:653–9. https://doi.org/10.1016/j.ijom.2010.03.026.

    Article 
    PubMed 

    Google Scholar
     

  • Chen F, Terada K, Hanada K. A new method of predicting mandibular length increment on the basis of cervical vertebrae. Angle Orthod. 2004;74:630–4. https://doi.org/10.1043/0003-3219(2004)074%3c0630:ANMOPM%3e2.0.CO;2.

    Article 
    PubMed 

    Google Scholar
     

  • Chatzigianni A, Halazonetis DJ. Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. Am J Orthod Dentofac Orthop. 2009;136:481–9. https://doi.org/10.1016/j.ajodo.2009.04.017.

    Article 

    Google Scholar
     

  • Echevarría-Sánchez G, Arriola-Guillén LE, Malpartida-Carrillo V, et al. Reliability of cephalograms derived of cone beam computed tomography versus lateral cephalograms to estimate cervical vertebrae maturity in a Peruvian population: a retrospective study. Int Orthod. 2020;18:258–65. https://doi.org/10.1016/j.ortho.2020.01.001.

    Article 
    PubMed 

    Google Scholar
     

  • Tekın A, Cesur Aydın K. Comparative determination of skeletal maturity by hand–wrist radiograph, cephalometric radiograph and cone beam computed tomography. Oral Radiol. 2019. https://doi.org/10.1007/s11282-019-00408-y.

    Article 
    PubMed 

    Google Scholar
     

  • Tadinada A, Schneider S, Yadav S. Role of cone beam computed tomography in contemporary orthodontics. Semin Orthod. 2018;24:407–15. https://doi.org/10.1053/j.sodo.2018.10.005.

    Article 

    Google Scholar
     

  • Kapila SD, Nervina JM. CBCT in orthodontics: assessment of treatment outcomes and indications for its use. Dentomaxillofac Radiol. 2015;44:20140282. https://doi.org/10.1259/dmfr.20140282.

    Article 
    PubMed 

    Google Scholar
     

  • Obelenis Ryan DP, Bianchi J, Ignácio J, et al. Cone-beam computed tomography airway measurements: can we trust them? Am J Orthod Dentofac Orthop. 2019;156:53–60. https://doi.org/10.1016/j.ajodo.2018.07.024.

    Article 

    Google Scholar
     

  • Hodges RJ, Atchison KA, White SC. Impact of cone-beam computed tomography on orthodontic diagnosis and treatment planning. Am J Orthod Dentofac Orthop. 2013;143:665–74. https://doi.org/10.1016/j.ajodo.2012.12.011.

    Article 

    Google Scholar
     

  • Dai X, Bai J, Liu T, Xie L. Limited-view cone-beam CT reconstruction based on an adversarial autoencoder network with joint loss. IEEE Access. 2019;7:7104–16. https://doi.org/10.1109/ACCESS.2018.2890135.

    Article 

    Google Scholar
     

  • Jain S, Choudhary K, Nagi R, et al. New evolution of cone-beam computed tomography in dentistry: combining digital technologies. Imaging Sci Dent. 2019;49:179–90. https://doi.org/10.5624/isd.2019.49.3.179.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pauwels R, Jacobs R, Bosmans H, Schulze R. Future prospects for dental cone beam CT imaging. Imaging Med. 2012;4:551–63. https://doi.org/10.2217/iim.12.45.

    Article 

    Google Scholar
     

  • Byun BR, Il KY, Yamaguchi T, et al. Quantitative skeletal maturation estimation using cone-beam computed tomography-generated cervical vertebral images: a pilot study in 5- to 18-year-old Japanese children. Clin Oral Investig. 2015;19:2133–40. https://doi.org/10.1007/s00784-015-1415-6.

    Article 
    PubMed 

    Google Scholar
     

  • Byun B-R, Kim Y-I, Yamaguchi T, et al. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls. Comput Math Methods Med. 2015;2015: 405912. https://doi.org/10.1155/2015/405912.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tripepi G, Jager KJ, Dekker FW, Zoccali C. Linear and logistic regression analysis. Kidney Int. 2008;73:806–10. https://doi.org/10.1038/sj.ki.5002787.

    Article 
    PubMed 

    Google Scholar
     

  • Draper NR, Smith H. Applied regression analysis. New York: Wiley; 1998.

    Book 

    Google Scholar
     

  • Ray S. A quick review of machine learning algorithms. In: 2019 International conference on machine learning, big data, cloud and parallel computing (COMITCon). IEEE; 2019. p. 35–9. https://doi.org/10.1109/COMITCon.2019.8862451.

  • Amasya H, Cesur E, Yıldırım D, Orhan K. Validation of cervical vertebral maturation stages: artificial intelligence vs human observer visual analysis. Am J Orthod Dentofac Orthop. 2020;158:e173–9. https://doi.org/10.1016/j.ajodo.2020.08.014.

    Article 

    Google Scholar
     

  • Hassel B, Farman AG. Skeletal maturation evaluation using cervical vertebrae. Am J Orthod Dentofac Orthop. 1995;107:58–66. https://doi.org/10.1016/S0889-5406(95)70157-5.

    Article 

    Google Scholar
     

  • Swennen GRJ, Schutyser F, Hausamen J-E. Three-dimensional cephalometry: a color atlas and manual. Berlin: Springer; 2006.

    Book 

    Google Scholar
     

  • Grilli L, Rampichini C. Encyclopedia of quality of life and well-being research. Dordrecht: Springer; 2014.


    Google Scholar
     

  • Morris KM, Fields HW, Beck FM, Kim DG. Diagnostic testing of cervical vertebral maturation staging: an independent assessment. Am J Orthod Dentofac Orthop. 2019;156:626–32. https://doi.org/10.1016/j.ajodo.2018.11.016.

    Article 

    Google Scholar
     

  • Uysal T, Ramoglu SI, Basciftci FA, Sari Z. Chronologic age and skeletal maturation of the cervical vertebrae and hand-wrist: is there a relationship? Am J Orthod Dentofac Orthop. 2006;130:622–8. https://doi.org/10.1016/j.ajodo.2005.01.031.

    Article 

    Google Scholar
     

  • Cericato GO, Bittencourt MAV, Paranhos LR. Validity of the assessment method of skeletal maturation by cervical vertebrae: a systematic review and meta-analysis. Dentomaxillofac Radiol. 2015;44:20140270. https://doi.org/10.1259/dmfr.20140270.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kang ST, Choi SH, Kim KH, Hwang CJ. Evaluation of cephalometric characteristics and skeletal maturation of the cervical vertebrae and hand-wrist in girls with central precocious puberty. Korean J Orthod. 2020;50:181–7. https://doi.org/10.4041/kjod.2020.50.3.181.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baccetti T, Franchi L, McNamara JA. An improved version of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. Angle Orthod. 2002;72:316–23. https://doi.org/10.1043/0003-3219(2002)072%3c0316:AIVOTC%3e2.0.CO;2.

    Article 
    PubMed 

    Google Scholar
     

  • Ramírez-Velásquez M, Viloria-Ávila TJ, Rodríguez DA, et al. Maturation of cervical vertebrae and chronological age in children and adolescents. Acta Odontol Latinoam. 2018;31:125–30.

    PubMed 

    Google Scholar
     

  • Yoganandan N, Pintar FA, Lew SM, et al. Quantitative analyses of pediatric cervical spine ossification patterns using computed tomography. Ann Adv Automot Med Assoc Adv Automot Med Annu Sci Conf. 2011;55:159–68.


    Google Scholar
     

  • Debelmas A, Ketoff S, Lanciaux S, et al. Reproducibility assessment of Delaire cephalometric analysis using reconstructions from computed tomography. J Stomatol Oral Maxillofac Surg. 2020;121:35–9. https://doi.org/10.1016/j.jormas.2019.04.008.

    Article 
    PubMed 

    Google Scholar
     

  • İzgi E, Pekiner FN. Comparative evaluation of conventional and OnyxCeph™ dental software measurements on cephalometric radiography. Turk J Orthod. 2019;32:87–95. https://doi.org/10.5152/TurkJOrthod.2019.18038.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kunz F, Stellzig-Eisenhauer A, Zeman F, Boldt J. Artificial intelligence in orthodontics: evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J Orofac Orthop. 2020;81:52–68. https://doi.org/10.1007/s00056-019-00203-8.

    Article 
    PubMed 

    Google Scholar
     

  • Dot G, Rafflenbeul F, Arbotto M, et al. Accuracy and reliability of automatic three-dimensional cephalometric landmarking. Int J Oral Maxillofac Surg. 2020;49:1367–78. https://doi.org/10.1016/j.ijom.2020.02.015.

    Article 
    PubMed 

    Google Scholar
     

  • AlBarakati SF, Kula KS, Ghoneima AA. The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol. 2012;41:11–7. https://doi.org/10.1259/dmfr/37010910.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goracci C, Ferrari M. Reproducibility of measurements in tablet-assisted, PC-aided, and manual cephalometric analysis. Angle Orthod. 2014;84:437–42. https://doi.org/10.2319/061513-451.1.

    Article 
    PubMed 

    Google Scholar
     

  • Chartrand G, Cheng PM, Vorontsov E, et al. Deep learning: a primer for radiologists. Radiographics. 2017;37:2113–31. https://doi.org/10.1148/rg.2017170077.

    Article 
    PubMed 

    Google Scholar
     

  • Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.

    Article 
    PubMed 

    Google Scholar
     



  • Source link

    Related Articles