Home Dental Radiology Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study

Deep learning object detection of maxillary cyst-like lesions on panoramic radiographs: preliminary study

by adminjay


  • 1.

    Sahiner B, Pezeshk A, Hadjiiski LM, Wang X, Drukker K, Cha KH, Summers RM, Giger ML. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46:e1–e36.

    Article 

    Google Scholar
     

  • 2.

    Cao Z, Yang G, Chen Q, Chen X, Lv F. Breast tumor classification through learning from noisy labeled ultrasound images. Med Phys. 2020;47:1048–57.

    Article 

    Google Scholar
     

  • 3.

    Wang X, Liang X, Jiang Z, Nguchu BA, Zhou Y, Wang Y, Wang H, Li Y, Zhu Y, Wu F, Gao JH, Qiu B. Decoding and mapping task states of the human brain via deep learning. Hum Brain Mapp. 2020;41:1505–19.

    Article 

    Google Scholar
     

  • 4.

    Cao Z, Duan L, Yang G, Yue T, Chen Q. An experimental study on breast lesiondetection and classification from ultrasound images using deep learning architectures. BMC Med Imaging. 2019;19:51.

    Article 

    Google Scholar
     

  • 5.

    Chen S, Zhong X, Hu S, Dorn S, Kachelrieß M, Lell M, Maier A. Automatic multi-organ segmentation in dual energy CT (DECT) with dedicated 3D fully convolutional DECT networks. Med Phys. 2020;47:552–62.

    Article 

    Google Scholar
     

  • 6.

    Ariji Y, Fukuda M, Kise Y, Nozawa M, Yanashita Y, Fujita H, et al. Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using deep learning system of artificial intelligence. Oral Sur Oral Med Oral Pathol Oral Radiol. 2019;127:458–63.

    Article 

    Google Scholar
     

  • 7.

    Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, et al. Preliminary study on the application of deep learning system to diagnosis of Sjogren’s syndrome. Dentomaxillofac Radiol. 2019;48:20190019.

    Article 

    Google Scholar
     

  • 8.

    Ariji Y, Sugita Y, Nagao T, Nakayama A, Fukuda M, Kise Y, et al. CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification. Oral Radiol. 2020;36:148–55.

    Article 

    Google Scholar
     

  • 9.

    Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:424–30.

    Article 

    Google Scholar
     

  • 10.

    Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2020;36:337–343. https://doi.org/10.1007/s11282-019-00409-x.

    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, Kise Y, Nozawa M, Katsumata A, Fujita H, Ariji E. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35:301–7.

    Article 

    Google Scholar
     

  • 12.

    Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, Ariji E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofac Radiol. 2019;48:20180218.

    Article 

    Google Scholar
     

  • 13.

    Ohashi Y, Ariji Y, Katsumata A, Fujita H, Nakayama M, Fukuda M, Nozawa M, Ariji E. Utilization of computer-aided detection system in diagnosing unilateral maxillary sinusitis on panoramic radiographs. Dentomaxillofac Radiol. 2016;45:20150419.

    Article 

    Google Scholar
     

  • 14.

    Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going Deeper with Convolutions. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015; 1–9. https://arxiv.org/abs/1409.4842. Accessed 20 Dec 2015.

  • 15.

    Lee JH, Han SS, Kim YH, Lee C, Kim I. Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol. 2020;129:635–42.

    Article 

    Google Scholar
     

  • 16.

    Ghazi P, Hernandez AM, Abbey C, Yang K, Boone JM. Shading artifact correction in breast CT using an interleaved deep learning segmentation and maximum-likelihood polynomial fitting approach. Med Phys. 2019;46:3414–30.

    Article 

    Google Scholar
     

  • 17.

    Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9:3840.

    Article 

    Google Scholar
     

  • 18.

    Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48:20180051.

    Article 

    Google Scholar
     

  • 19.

    Kats L, Vered M, Zlotogorski-Hurvitz A, Harpaz I. Atherosclerotic carotid plaque on panoramic radiographs: neural network detection. Int J Comput Dent. 2019;22:163–9.

    PubMed 

    Google Scholar
     

  • 20.

    Yu J, Sharpe SM, Schumann AW, Boyd NS. Detection of broadleaf weeds growing in turfgrass with convolutional neural networks. Pest Manag Sci. 2019;75:2211–8.

    Article 

    Google Scholar
     



  • Source link

    Related Articles

    Leave a Comment